febrero 2013

You are currently browsing the monthly archive for febrero 2013.

CoCoNuT es un código que permite realizar simulaciones de colapso estelar. Reescribimos las ecuaciones CFC, que son un caso particular de la aproximación FCF haciendo que las $latex h^{ij}$ sean cero, en terminos de las variables que éste utiliza. Empezamos con una auxilar:

 $latex Delta X^i = 8 pi f^{ij}S_j^* – frac{1}{3}mathcal{D}^i mathcal{D}_j X^j$

donde:

$latex S_j^* := sqrt{ frac{gamma}{f} } S = psi^6 S_j$,

$latex S_j := rho h w^2 v_j$.

La primera es:

$latex Delta psi = -2 pi psi^{-1} E^* – psi^{-7} frac{f_{il}f_{jm}hat{A}^{lm}hat{A}^{ij}}{8}$

donde:

$latex E^*:= sqrt{ frac{gamma}{f} } E = psi^6 E$,

$latex E:= D + tau$

La siguiente:

$latex Delta (psi alpha) = 2 pi alpha (E^* + 2S^*) + alpha psi^{-7} frac{7 f_{il} f{jm} hat{A}^{lm} hat{A}^{ij}}{8}$

con:

$latex S^*:= sqrt{ frac{gamma}{f} } S = psi^6 S$,

$latex S:= rho h (w^2-1) + 3 p$

Y la última:

$latex Delta beta^i = mathcal{D}_j (2 alpha psi^{-6} hat{A}^{ij}) – frac{1}{3} mathcal{D}^i (mathcal{D}_j beta^j)$.

Además, en CFC, tenemos:

$latex hat{A}^{ij} = (LX)^{ij} + hat{A}^{ij}_{TT} approx (LX)^{ij} = mathcal{D}^i X^j + mathcal{D}^j X^i – frac{2}{3} mathcal{D}_k X^k f^{ij}$

donde $latex L$ es el operador de Killing conforme actuando sobre la parte longitudinal $latex X^i$ sin traza y $latex A^{ij}_{TT}$ es la parte transversal sin traza de la curvatura extrínseca , y de FCF tenemos:

  • la métrica inducida en cada hipersuperficie $latex gamma_{mu nu} := g_{mu nu} + n_{mu} n_{nu}$ (o $latex boldsymbol{gamma} := boldsymbol{g} + boldsymbol{n} otimes boldsymbol{n}$ ) con $latex boldsymbol{n} = frac{dt}{|dt|}$.
  • la curvatura extrínseca $latex boldsymbol{K:=-frac{1}{2}mathcal{L}_{boldsymbol{n}} boldsymbol{gamma}}$ (o, con índices, $latex K_{mu nu} = -frac{1}{2} mathcal{L}_{boldsymbol{n}} gamma_{mu nu}$).

Tags: , , ,

Textualmente del libro:

“As with any numerical code, debugging can be the most difficult part of creating a successful program. For multigrid, this situation is exacerbated in two ways. First, the interaction between the various multigrid components are very subtle, and it can be difficult to determine which part of a code is defective. Even more insidious is the fact that an incorrectly implemented multigrid code can perform quite well -somentimes better than other solution methods!”

Puedo confirmar, de primera mano, que ésto es así…

Tags:

No tiene nada que ver con los temas habituales del blog, pero bueno, la vida es algo mas que ciencia y tecnología ¿no?. Simplemente unas frases que me gustaron de “El lado bueno de las cosas”:

“Estoy convencido de ello. Tienes que hacer todo lo que puedes y esforzarte al máximo y, si mantienes el optimismo, siempre te quedará el lado bueno de las cosas.”

“Te lo advierto. Tienes que estar atento a las señales. Cuando la vida te brinda un momento como éste, es un pecado no aprovecharlo. Es un pecado.”

Interesantes 🙂

Simplemente un reblog de nuestro crack Terry Tao sobre como capturar los conceptos esenciales de la derivación y la integración de manera algebraica para permitir su utilización sobre otros sistemas numéricos distintos de aquellos que soportan el concepto de límite, o sea, los reales y los complejos.

Posteriormente comenta como puede utilizar éstas cuando trabaja en teoría cuántica de campos para calcular integrales con variables bosónicas y fermiónicas (variables conmutativas y anticonmutativas en álgebra superconmutativa).

Tags: , , , , , , , , , ,

Una manera sencilla de tener una ecuación de Poisson en $latex 3D$ de la que conocer su solución analítica es la siguiente. Para empezar, consideramos una función:

$latex u(x,y,z)$

a la que le aplicamos el operador $latex Delta$ y obtendremos otra función:

$latex s(x,y,z)$.

Ya tenemos $latex Delta u = s$, es decir,

$latex frac{partial^2}{partial x^2}u(x,y,z) + frac{partial^2}{partial y^2}u(x,y,z) + frac{partial^2}{partial z^2}u(x,y,z) = s(x,y,z)$

Para las condiciones de contorno es tan sencillo como considerar el domino:

$latex [a,b] times [c,d] times [e,f]$

y ver cuanto vale $latex u$ en cada uno de los extremos, de manera que obtenemos:

$latex u(a,y,z) = g_a(y,z), u(b,y,z) = g_b(y,z)$,

$latex u(x,c,z) = g_c(x,z), u(x,d,z) = g_d(x,z)$,

$latex u(x,y,e) = g_e(x,y), u(x,y,f) = g_f(x,y)$.

Por ejemplo, si consideramos $latex u(x,y,z)=x^2+y^2+z^2$, entonces:

$latex nabla cdot nabla u = (frac{partial}{partial x},frac{partial}{partial y},frac{partial}{partial z}) cdot (u_x,u_y,u_z)$

de manera que:

$latex Delta u = frac{partial}{partial x}2x + frac{partial}{partial y}2y + frac{partial}{partial z}2z = 6$

y tenemos la ecuación de Poisson $latex Delta u = 6$. Las condiciones de contorno, en $latex Omega = [0,1]^3$ quedan:

$latex u(0,y,z) = g_{xm}(y,z) = y^2+z^2$

$latex u(1,y,z) = g_{xM}(y,z) = y^2+z^2 + 1$

$latex u(x,0,z) = g_{ym}(x,z) = x^2+z^2$

$latex u(x,1,z) = g_{yM}(x,z) = x^2+z^2 + 1$

$latex u(x,y,0) = g_{zm}(x,y) = x^2+y^2$

$latex u(x,y,1) = g_{zM}(x,y) = x^2+y^2 + 1$

Resumiendo, la solución de $latex Delta u = 6$ siendo las funciones anteriores los valores de $latex u$ en $latex partial Omega$ es:

$latex u = x^2+y^2 + z^2$.

Otro ejemplo concreto para el caso de $latex u=0$ en $latex partial Omega$ siendo

$latex Omega = { (x,y,z): 0<x<1, 0<y<1,0<z<1}$ el cubo unidad.

Tomamos $latex u(x,y,z) = (x^4-x^2)(y^4-y^2)(z^4-z^2)$. Es sencillo comprobar que $latex u=0$ en $latex partial Omega$ (p.e. $latex u(1,y,z)=(1-1)(y^4-y^2)(z^4-z^2) = 0$). ¿Cuanto vale $latex Delta u$ en este caso?

$latex s(x,y,z) = Delta [(x^4-x^2)(y^4-y^2)(z^4-z^2)] = $

$latex = nabla cdot [(4x^3-2x)(y^4-y^2)(z^4-z^2),$

$latex ,(x^4-x^2)(4y^3-2y)(z^4-z^2),$

$latex (x^4-x^2)(y^4-y^2)(4z^3-2z)] = $

$latex = 2[(6x^2-1)(y^4-y^2)(z^4-z^2) +$

$latex + (x^4-x^2)(6y^2-1)(z^4-z^2) + $

$latex + (x^4-x^2)(y^4-y^2)(6z^2-1)]$.

De manera que la solución en el cubo unidad de la ecuación de Poisson

$latex u_{xx} + u_{yy} + u_{zz} = $

$latex = 2[(6x^2-1)(y^4-y^2)(z^4-z^2) +$

$latex + (x^4-x^2)(6y^2-1)(z^4-z^2) + $

$latex + (x^4-x^2)(y^4-y^2)(6z^2-1)]$

con condiciones homogeneas de tipo Dirichlet en la frontera tiene como solución:

$latex u(x,y,z) = (x^4-x^2)(y^4-y^2)(z^4-z^2)$

Tags: , ,

Aunque siempre podemos hacer cambios de coordenadas, vamos a ver como quedan los esquemas de diferencias finitas en sistemas no rectangulares: coordenadas cilíndricas, $latex (rho,phi, z)$, y coordenadas esféricas, $latex (r,theta,phi)$. Nos centraremos en la ecuación de Poisson aunque la técnica se puede extender de manera inmediata a cualquier tipo de PDE.

En coordenadas cilíndricas podemos escribir:

$latex nabla cdot nabla u = frac{partial^2}{partial rho^2}u + frac{1}{rho}frac{partial}{partial rho}u + frac{1}{rho^2}frac{partial^2}{partial phi^2}u + frac{partial^2}{partial z^2} u = f$,

que podemos discretizar como:

$latex frac{u_{i-1,j,k}-2u_{i,j,k}+u_{i+1,j,k}}{(Delta rho)^2} + $

$latex + frac{1}{rho_{i,j,k}}frac{u_{i+1,j,k}-u_{i-1,j,k}}{2Delta rho} + $

$latex + frac{1}{rho_{i,j,k}^2} frac{u_{i,j-1,k}-2u_{i,j,k}+u_{i,j+1,k}}{(Delta phi)^2} + $

$latex + frac{u_{i,j,k-1}-2u_{i,j,k}+u_{i,j,k+1}}{(Delta z)^2} = f_{i,j,k}$

En coordenadas esféricas tenemos:

$latex nabla cdot nabla u = frac{partial^2}{partial r^2}u + frac{2}{r} frac{partial}{partial r}u + frac{1}{r^2}frac{partial^2}{partial theta^2}u + frac{1}{r^2sintheta} frac{partial}{partial theta}u + frac{1}{r^2 sin^2theta} frac{partial^2}{partial phi^2}u = f$

que podemos discretizar como:

$latex frac{u_{i-1,j,k-2u_{i,j,k}+u_{i+1,j,k}}}{(Delta r)^2} + $

$latex + frac{2}{r_{i,j,k}} frac{u_{i+1,j,k}+u_{i-1,j,k}}{2Delta r} + $

$latex + frac{u_{i,j-1,k}-2u_{i,j,k}+u_{i,j+1,k}}{(r_{i,j,k} Delta theta)^2} + $

$latex + frac{1}{r_{i,j,k}^2 sin phi_{i,j,k}} frac{u_{i,j+1,k}-u_{i,j-1,k}}{2 Delta phi} + $

$latex + frac{u_{i,j,k-1}-2u_{i,j,k}+u_{i,j,k+1}}{(r_{i,j,k} sin phi_{i,j,k} Delta phi)^2} = f_{i,j,k}$

Tags: , , , , ,

En $latex n$ dimensiones, el operador Laplaciano queda como:

$latex Delta u= sum_{i=1}^n frac{partial^2}{partial x_i^2}u$

en coordenadas cartesianas, y como:

$latex Delta u = frac{partial}{partial r^2}u + frac{n-1}{r}frac{partial}{partial r}u + frac{1}{r^2}Delta_{S^{n-1}}u$

en esféricas, donde $latex Delta_{S^{n-1}}$ es el operador de Laplace-Beltrami, una generalización del Laplaciano para funciones definidas sobre variedades,  en la $latex (n-1)$-esfera ($latex S^{n-1}$), el operador Laplaciano esférico.

Un punto es un tensor sin índices, un vector es un tensor con $latex 1$ índice, una matriz es un tensor con $latex 2$ índices, etc. Cuando discreticemos una PDE en $latex n$ dimensiones, llegaremos a un tensor con $latex n$ índices y $latex 2n$ tensores con $latex n-1$ índices para las condiciones en las fronteras.

Tags: , , , , ,

Vamos a suponer $latex n=3$ para reducir el tamaño de las matrices.

Empezamos suponiendo que conocemos:

$latex frac{partial}{partial x}|_{0,0,}u, frac{partial}{partial x}|_{0,1}u, frac{partial}{partial x}|_{0,2}u$

$latex frac{partial}{partial y}|_{0,0}u, frac{partial}{partial y}|_{1,0}u$

$latex frac{partial}{partial y}|_{0,2}u, frac{partial}{partial y}|_{1,2}u$

$latex u|_{2,0}, u|_{2,1}, u|_{2,2}$

Discretizamos:

$latex frac{u_{-1,0}-2u_{0,0}+u_{1,0}}{h^2} + frac{u_{0,-1}-2u_{0,0}+u_{0,1}}{h^2} = f_{0,0}$

$latex frac{u_{-1,1}-2u_{0,1}+u_{1,1}}{h^2} + frac{u_{0,0}-2u_{0,1}+u_{0,2}}{h^2} = f_{0,1}$

$latex frac{u_{-1,2}-2u_{0,2}+u_{1,2}}{h^2} + frac{u_{0,1}-2u_{0,2}+u_{0,3}}{h^2} = f_{0,2}$

$latex frac{u_{0,0}-2u_{1,0}+u_{2,0}}{h^2} + frac{u_{1,-1}-2u_{1,0}+u_{1,1}}{h^2} = f_{1,0}$

$latex frac{u_{0,1}-2u_{1,1}+u_{2,1}}{h^2} + frac{u_{1,0}-2u_{1,1}+u_{1,2}}{h^2} = f_{1,1}$

$latex frac{u_{0,2}-2u_{1,2}+u_{2,2}}{h^2} + frac{u_{1,1}-2u_{1,2}+u_{1,3}}{h^2} = f_{1,2}$

En las fronteras, sabemos que:

$latex frac{u_{1,0}-u_{-1,0}}{2h} = frac{partial}{partial x}|_{0,0}u Leftrightarrow u_{-1,0}=u_{1,0}-2h frac{partial}{partial x}|_{0,0}u$

$latex frac{u_{1,1}-u_{-1,1}}{2h} = frac{partial}{partial x}|_{0,1}u Leftrightarrow u_{-1,1}=u_{1,1}-2h frac{partial}{partial x}|_{0,1}u$

$latex frac{u_{1,2}-u_{-1,2}}{2h} = frac{partial}{partial x}|_{0,2}u Leftrightarrow u_{-1,2}=u_{1,2}-2h frac{partial}{partial x}|_{0,2}u$

$latex frac{u_{0,1}-u_{0,-1}}{2h} = frac{partial}{partial y}|_{0,0}u Leftrightarrow u_{0,-1}=u_{0,1}-2h frac{partial}{partial y}|_{0,0}u$

$latex frac{u_{1,1}-u_{1,-1}}{2h} = frac{partial}{partial y}|_{1,0}u Leftrightarrow u_{1,-1}=u_{1,1}-2h frac{partial}{partial y}|_{1,0}u$

$latex frac{u_{0,3}-u_{0,1}}{2h} = frac{partial}{partial y}|_{0,2}u Leftrightarrow u_{0,3}=u_{0,1}+2h frac{partial}{partial y}|_{0,2}u$

$latex frac{u_{1,3}-u_{1,1}}{2h} = frac{partial}{partial y}|_{1,2}u Leftrightarrow u_{1,3}=u_{1,1}+2h frac{partial}{partial y}|_{1,2}u$

La matriz queda:

$latex left(
begin{array}{ccc|ccc}
-4 & 2 & 0 & 2 & 0 & 0 \
1 & -4 & 1 & 0 & 2 & 0 \
0 & 2 & -4 & 0 & 0 & 2 \ hline
1 & 0 & 0 & -4 & 2 & 0 \
0 & 1 & 0 & 1 & -4 & 1 \
0 & 0 & 1 & 0 & 2 & -4
end{array}
right)$

Simetrizable como:

$latex left(
begin{array}{ccc|ccc}
-1 & frac{1}{2} & 0 & frac{1}{2} & 0 & 0 \
frac{1}{2} & -2 & frac{1}{2} & 0 & 1 & 0 \
0 & frac{1}{2} & -1 & 0 & 0 & frac{1}{2} \ hline
frac{1}{2} & 0 & 0 & -2 & 1 & 0 \
0 & 1 & 0 & 1 & -4 & 1 \
0 & 0 & frac{1}{2} & 0 & 1 & -2
end{array}
right)$

Tenemos $latex 6$ ecuaciones con $latex 6$ incognitas y la matriz tiene rango $latex 6$, por lo que la solución es única.

En el segundo caso, suponemos que todas las fronteras son Neumann:

$latex frac{partial}{partial x}|_{0,0}u, frac{partial}{partial x}|_{0,1}u, frac{partial}{partial x}|_{0,2}u$

$latex frac{partial}{partial y}|_{0,0}u, frac{partial}{partial y}|_{1,0}u, frac{partial}{partial y}|_{2,0}u$

$latex frac{partial}{partial y}|_{0,2}u, frac{partial}{partial y}|_{1,2}u, frac{partial}{partial y}|_{2,2}u$

$latex frac{partial}{partial x}|_{2,0}u, frac{partial}{partial x}|_{2,1}u, frac{partial}{partial x}|_{2,2}u$

Si discretizamos:

$latex frac{u_{-1,0}-2u_{0,0}+u_{1,0}}{h^2} + frac{u_{0,-1}-2u_{0,0}+u_{0,1}}{h^2} = f_{0,0}$

$latex frac{u_{-1,1}-2u_{0,1}+u_{1,1}}{h^2} + frac{u_{0,0}-2u_{0,1}+u_{0,2}}{h^2} = f_{0,1}$

$latex frac{u_{-1,2}-2u_{0,2}+u_{1,2}}{h^2} + frac{u_{0,1}-2u_{0,2}+u_{0,3}}{h^2} = f_{0,2}$

$latex frac{u_{0,0}-2u_{1,0}+u_{2,0}}{h^2} + frac{u_{1,-1}-2u_{1,0}+u_{1,1}}{h^2} = f_{1,0}$

$latex frac{u_{0,1}-2u_{1,1}+u_{2,1}}{h^2} + frac{u_{1,0}-2u_{1,1}+u_{1,2}}{h^2} = f_{1,1}$

$latex frac{u_{0,2}-2u_{1,2}+u_{2,2}}{h^2} + frac{u_{1,1}-2u_{1,2}+u_{1,3}}{h^2} = f_{1,2}$

$latex frac{u_{1,0}-2u_{2,0}+u_{3,0}}{h^2} + frac{u_{2,-1}-2u_{2,0}+u_{2,1}}{h^2} = f_{2,0}$

$latex frac{u_{1,1}-2u_{2,1}+u_{3,1}}{h^2} + frac{u_{2,0}-2u_{2,1}+u_{2,2}}{h^2} = f_{2,1}$

$latex frac{u_{1,2}-2u_{2,2}+u_{3,2}}{h^2} + frac{u_{2,1}-2u_{2,2}+u_{2,3}}{h^2} = f_{2,2}$

En las fronteras, sabemos que:

$latex frac{u_{1,0}-u_{-1,0}}{2h} = frac{partial}{partial x}|_{0,0}u Leftrightarrow u_{-1,0}=u_{1,0}-2h frac{partial}{partial x}|_{0,0}u$

$latex frac{u_{1,1}-u_{-1,1}}{2h} = frac{partial}{partial x}|_{0,1}u Leftrightarrow u_{-1,1}=u_{1,1}-2h frac{partial}{partial x}|_{0,1}u$

$latex frac{u_{1,2}-u_{-1,2}}{2h} = frac{partial}{partial x}|_{0,2}u Leftrightarrow u_{-1,2}=u_{1,2}-2h frac{partial}{partial x}|_{0,2}u$

$latex frac{u_{0,1}-u_{0,-1}}{2h} = frac{partial}{partial y}|_{0,0}u Leftrightarrow u_{0,-1}=u_{0,1}-2h frac{partial}{partial y}|_{0,0}u$

$latex frac{u_{1,1}-u_{1,-1}}{2h} = frac{partial}{partial y}|_{1,0}u Leftrightarrow u_{1,-1}=u_{1,1}-2h frac{partial}{partial y}|_{1,0}u$

$latex frac{u_{2,1}-u_{2,-1}}{2h} = frac{partial}{partial y}|_{2,0}u Leftrightarrow u_{2,-1}=u_{2,1}-2h frac{partial}{partial y}|_{2,0}u$

$latex frac{u_{0,3}-u_{0,1}}{2h} = frac{partial}{partial y}|_{0,2}u Leftrightarrow u_{0,3}=u_{0,1}+2h frac{partial}{partial y}|_{0,2}u$

$latex frac{u_{1,3}-u_{1,1}}{2h} = frac{partial}{partial y}|_{1,2}u Leftrightarrow u_{1,3}=u_{1,1}+2h frac{partial}{partial y}|_{1,2}u$

$latex frac{u_{2,3}-u_{2,1}}{2h} = frac{partial}{partial y}|_{2,2}u Leftrightarrow u_{2,3}=u_{2,1}+2h frac{partial}{partial y}|_{2,2}u$

$latex frac{u_{3,0}-u_{1,0}}{2h} = frac{partial}{partial x}|_{2,0}u Leftrightarrow u_{3,0}=u_{1,0}+2h frac{partial}{partial x}|_{2,0}u$

$latex frac{u_{3,1}-u_{1,1}}{2h} = frac{partial}{partial x}|_{2,1}u Leftrightarrow u_{3,1}=u_{1,1}+2h frac{partial}{partial x}|_{2,1}u$

$latex frac{u_{3,2}-u_{1,2}}{2h} = frac{partial}{partial x}|_{2,2}u Leftrightarrow u_{3,2}=u_{1,2}+2h frac{partial}{partial x}|_{2,2}u$

La matriz, por tanto, queda:

$latex text{A6}=left(
begin{array}{ccc|ccc|ccc}
-4 & 2 & 0 & 2 & 0 & 0 & 0 & 0 & 0 \
1 & -4 & 1 & 0 & 2 & 0 & 0 & 0 & 0 \
0 & 2 & -4 & 0 & 0 & 2 & 0 & 0 & 0 \ hline
1 & 0 & 0 & -4 & 2 & 0 & 1 & 0 & 0 \
0 & 1 & 0 & 1 & -4 & 1 & 0 & 1 & 0 \
0 & 0 & 1 & 0 & 2 & -4 & 0 & 0 & 1 \ hline
0 & 0 & 0 & 2 & 0 & 0 & -4 & 2 & 0 \
0 & 0 & 0 & 0 & 2 & 0 & 1 & -4 & 1 \
0 & 0 & 0 & 0 & 0 & 2 & 0 & 2 & -4
end{array}
right)$

Simetrizable como:

$latex text{A6s}=left(
begin{array}{ccc|ccc|ccc}
-1 & 1/2 & 0 & 1/2 & 0 & 0 & 0 & 0 & 0 \
1/2 & -2 & 1/2 & 0 & 1 & 0 & 0 & 0 & 0 \
0 & 1/2 & -1 & 0 & 0 & 1/2 & 0 & 0 & 0 \ hline
1/2 & 0 & 0 & -2 & 1 & 0 & 1/2 & 0 & 0 \
0 & 1 & 0 & 1 & -4 & 1 & 0 & 1 & 0 \
0 & 0 & 1/2 & 0 & 1 & -2 & 0 & 0 & 1/2 \ hline
0 & 0 & 0 & 1/2 & 0 & 0 & -1 & 1/2 & 0 \
0 & 0 & 0 & 0 & 1 & 0 & 1/2 & -2 & 1/2 \
0 & 0 & 0 & 0 & 0 & 1/2 & 0 & 1/2 & -1
end{array}
right)$

En este caso, tenemos $latex 9$ ecuaciones con $latex 9$ incognitas pero la matriz tiene rango $latex 8$, por lo que tenemos infinitas soluciones. Hay que conservar.

Tags: , , , , ,

Suponemos $latex Delta u = f$ en $latex 2D$, es decir,

$latex frac{partial^2}{partial x^2}u(x,y) + frac{partial^2}{partial y^2}u(x,y) = f(x,y)$.

Miraremos como queda la matriz del sistema al discretizar, como simetrizarla y su rango en tres casos: condición Neuman respecto $latex x$ en una frontera, condición Neumann respecto $latex y$ en una frontera y condición Neumann respecto $latex x$ e $latex y$ en dos fronteras.

Discretizamos con $latex n=5$. Si todas las condiciones fueran Dirichlet, la matriz quedaría:

$latex A_1 = left(
begin{array}{ccc|ccc|ccc}
-4 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \
1 & -4 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \
0 & 1 & -4 & 0 & 0 & 1 & 0 & 0 & 0 \ hline
1 & 0 & 0 & -4 & 1 & 0 & 1 & 0 & 0 \
0 & 1 & 0 & 1 & -4 & 1 & 0 & 1 & 0 \
0 & 0 & 1 & 0 & 1 & -4 & 0 & 0 & 1 \ hline
0 & 0 & 0 & 1 & 0 & 0 & -4 & 1 & 0 \
0 & 0 & 0 & 0 & 1 & 0 & 1 & -4 & 1 \
0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & -4
end{array}
right) $.

En este caso, $latex A_1 in mathcal{M}(9 times 9)$ y simétrica, lo que permite tratar de manera conjunta los problemas de existencia y unicidad de solución. Si calculamos su rango obtenemos $latex 9$ por lo que existe solución y es única. Desde el punto de vista algebraico, es el punto $latex (u_{1,1},u_{1,2},u_{1,3},u_{2,1},u_{2,2},u_{2,3},u_{3,1},u_{3,2},u_{3,3})$ intersección de $latex 9$ hiperplanos

$latex -4x_{1,1} + x_{1,2} + x_{2,1} = f_{1,1}$,

$latex x_{1,1}-4x_{1,2}+x_{1,3} + x_{2,2} = f_{1,2}$,

$latex ldots$

en el espacio $latex mathbb{R}^9$.

Si condiremos conocidos $latex frac{partial}{partial x}|_{0,1}u, frac{partial}{partial x}|_{0,2}u, frac{partial}{partial x}|_{0,3}u$ en lugar de $latex u_{0,1}, u_{0,2}, u_{0,3}$ ($latex u_{0,0}$ y $latex u_{0,4}$ son conocidos por las otras fronteras que son Dirichelt), tenemos:

$latex A_2 = left(
begin{array}{ccc|ccc|ccc|ccc}
-4 & 1 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
1 & -4 & 1 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 1 & -4 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \ hline
1 & 0 & 0 & -4 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \
0 & 1 & 0 & 1 & -4 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \
0 & 0 & 1 & 0 & 1 & -4 & 0 & 0 & 1 & 0 & 0 & 0 \ hline
0 & 0 & 0 & 1 & 0 & 0 & -4 & 1 & 0 & 1 & 0 & 0 \
0 & 0 & 0 & 0 & 1 & 0 & 1 & -4 & 1 & 0 & 1 & 0 \
0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & -4 & 0 & 0 & 1 \ hline
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & -4 & 1 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & -4 & 1 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & -4
end{array}
right)$

de manera que $latex A_2 in mathcal{M}(12 times 12)$ y no es simétrica. Sin embargo es facilmente simetrizable dividiendo las tres primera filas (hacemos lo mismo en el termino independiente) por $latex 2$:

$latex A_2 = left(
begin{array}{ccc|ccc|ccc|ccc}
-2 & frac{1}{2} & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
frac{1}{2} & -2 & frac{1}{2} & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & frac{1}{2} & -2 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \ hline
1 & 0 & 0 & -4 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \
0 & 1 & 0 & 1 & -4 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \
0 & 0 & 1 & 0 & 1 & -4 & 0 & 0 & 1 & 0 & 0 & 0 \ hline
0 & 0 & 0 & 1 & 0 & 0 & -4 & 1 & 0 & 1 & 0 & 0 \
0 & 0 & 0 & 0 & 1 & 0 & 1 & -4 & 1 & 0 & 1 & 0 \
0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & -4 & 0 & 0 & 1 \ hline
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & -4 & 1 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & -4 & 1 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & -4
end{array}
right)$

Tenemos $latex 12$ incognitas ($latex u_{i,j}$ con $latex i=0..3$ y $latex j=1..3$) y el rango de $latex A_2$ es $latex 12$, por lo que la solución, nuevamente, es única.

Para el caso en el que conocemos $latex frac{partial}{partial y}|_{1,0}u, frac{partial}{partial y}|_{2,0}u, frac{partial}{partial y}|_{3,0}u$ en lugar de $latex u_{1,0}, u_{2,0}, u_{3,0}$, si el orden que tomamos es el contrario al tomado anteriormente llegaremos a la misma estructura de antes. Sin embargo, como en el siguiente caso nos veremos obligados a seleccionar uno de los dos, vamos a ver como queda este caso utilizando el mismo orden que antes:

$latex A_3 = left(
begin{array}{cccc|cccc|cccc}
-4 & 2 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
1 & -4 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 1 & -4 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 1 & -4 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \ hline
1 & 0 & 0 & 0 & -4 & 2 & 0 & 0 & 1 & 0 & 0 & 0 \
0 & 1 & 0 & 0 & 1 & -4 & 1 & 0 & 0 & 1 & 0 & 0 \
0 & 0 & 1 & 0 & 0 & 1 & -4 & 1 & 0 & 0 & 1 & 0 \
0 & 0 & 0 & 1 & 0 & 0 & 1 & -4 & 0 & 0 & 0 & 1 \ hline
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & -4 & 2 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & -4 & 1 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & -4 & 1 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & -4
end{array}
right)$

que podemos simetrizar facilmente y queda:

$latex A_3 = left(
begin{array}{cccc|cccc|cccc}
-2 & 1 & 0 & 0 & frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
1 & -4 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 1 & -4 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 1 & -4 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \ hline
frac{1}{2} & 0 & 0 & 0 & -2 & 1 & 0 & 0 & frac{1}{2} & 0 & 0 & 0 \
0 & 1 & 0 & 0 & 1 & -4 & 1 & 0 & 0 & 1 & 0 & 0 \
0 & 0 & 1 & 0 & 0 & 1 & -4 & 1 & 0 & 0 & 1 & 0 \
0 & 0 & 0 & 1 & 0 & 0 & 1 & -4 & 0 & 0 & 0 & 1 \ hline
0 & 0 & 0 & 0 & frac{1}{2} & 0 & 0 & 0 & -2 & 1 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & -4 & 1 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & -4 & 1 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & -4
end{array}
right)$

Tenemos $latex 12$ ecuaciones con $latex 12$ incognitas ($latex u_{i,j}$ con $latex i=1..3$ y $latex j=0..3$) y el rango de $latex A_3$ es $latex 12$, por lo que la solución es única.

Finalmente, suponemos conocidos $latex frac{partial}{partial x}|_{0,0}u, frac{partial}{partial x}|_{0,1}u, frac{partial}{partial x}|_{0,2}u, frac{partial}{partial x}|_{0,3}u, frac{partial}{partial y}|_{0,0}u, frac{partial}{partial y}|_{1,0}u, frac{partial}{partial y}|_{2,0}u, frac{partial}{partial y}|_{3,0}u$ que incorpora $latex 7$ ecuaciones mas a las $latex 9$ que ya teniamos por lo que nos queda una matrix $latex A_4 in mathcal{M}(16 times 16)$:

$latex left(
begin{array}{cccc|cccc|cccc|cccc}
-4 & 2 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
1 & -4 & 1 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 1 & -4 & 1 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 1 & -4 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \ hline
1 & 0 & 0 & 0 & -4 & 2 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 1 & 0 & 0 & 1 & -4 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 1 & 0 & 0 & 1 & -4 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 1 & 0 & 0 & 1 & -4 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \ hline
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & -4 & 2 & 0 & 0 & 1 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & -4 & 1 & 0 & 0 & 1 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & -4 & 1 & 0 & 0 & 1 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & -4 & 0 & 0 & 0 & 1 \ hline
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & -4 & 2 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & -4 & 1 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & -4 & 1 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & -4
end{array}
right)$,

simetrizable dividiendo la fila correspondiente a $latex u_{0,0}$ por $latex 4$, y las correspondientes a $latex u_{0,1}, u_{0,2}, u_{0,3}, u_{1,0},u_{2,0}, u_{3,0}$  por $latex 2$, quedando:

$latex left(
begin{array}{cccc|cccc|cccc|cccc}
-1 & frac{1}{2} & 0 & 0 & frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
frac{1}{2} & -2 & frac{1}{2} & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & frac{1}{2} & -2 & frac{1}{2} & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & frac{1}{2} & -2 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \ hline
frac{1}{2} & 0 & 0 & 0 & -2 & 1 & 0 & 0 & frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 1 & 0 & 0 & 1 & -4 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 1 & 0 & 0 & 1 & -4 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 1 & 0 & 0 & 1 & -4 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \ hline
0 & 0 & 0 & 0 & frac{1}{2} & 0 & 0 & 0 & -2 & 1 & 0 & 0 & frac{1}{2} & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & -4 & 1 & 0 & 0 & 1 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & -4 & 1 & 0 & 0 & 1 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & -4 & 0 & 0 & 0 & 1 \ hline
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & frac{1}{2} & 0 & 0 & 0 & -2 & 1 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & -4 & 1 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & -4 & 1 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & -4
end{array}
right)$,

con lo que el sistema vuelve a ser compatible y determinado.

Tags: , , , , , ,

Suponemos $latex n=5$. En el caso de tener todas las fronteras con condiciones Dirichlet:

$latex frac{u_{0,1} -2u_{1,1} + u_{2,1}}{h^2} + frac{u_{1,0} -2u_{1,1} + u_{1,2}}{h^2} = f_{1,1}$ para $latex i,j=1,1$,

$latex frac{u_{0,2} -2u_{1,2} + u_{2,2}}{h^2} + frac{u_{1,1} -2u_{1,2} + u_{1,3}}{h^2} = f_{1,2}$ para $latex i,j=1,2$,

$latex frac{u_{0,3} -2u_{1,3} + u_{2,3}}{h^2} + frac{u_{1,2} -2u_{1,3} + u_{1,4}}{h^2} = f_{1,3}$ para $latex i,j=1,3$,

$latex frac{u_{1,1} -2u_{2,1} + u_{3,1}}{h^2} + frac{u_{2,0} -2u_{2,1} + u_{2,2}}{h^2} = f_{2,1}$ para $latex i,j=2,1$,

$latex frac{u_{1,2} -2u_{2,2} + u_{3,2}}{h^2} + frac{u_{2,1} -2u_{2,2} + u_{2,3}}{h^2} = f_{2,2}$ para $latex i,j=2,2$,

$latex frac{u_{1,3} -2u_{2,3} + u_{3,3}}{h^2} + frac{u_{2,2} -2u_{2,3} + u_{2,4}}{h^2} = f_{2,3}$ para $latex i,j=2,3$,

$latex frac{u_{2,1} -2u_{3,1} + u_{4,1}}{h^2} + frac{u_{3,0} -2u_{3,1} + u_{3,2}}{h^2} = f_{3,1}$ para $latex i,j=3,1$,

$latex frac{u_{2,2} -2u_{3,2} + u_{4,2}}{h^2} + frac{u_{3,1} -2u_{3,2} + u_{3,3}}{h^2} = f_{3,2}$ para $latex i,j=3,2$,

$latex frac{u_{2,3} -2u_{3,3} + u_{4,3}}{h^2} + frac{u_{3,2} -2u_{3,3} + u_{3,4}}{h^2} = f_{3,3}$ para $latex i,j=3,3$,

de donde:

$latex begin{bmatrix} f_{1,1} -frac{u_{1,0} + u_{0,1}}{h^2} & f_{1,2} – frac{u_{0,2}}{h^2} & f_{1,3} – frac{u_{0,3}+u_{1,4}}{h^2} \ f_{2,1} -frac{u_{2,0}}{h^2} & f_{2,2} & f_{2,3} – frac{u_{2,4}}{h^2} \ f_{3,1} – frac{u_{3,0}+u_{4,1}}{h^2} & f_{3,2} – frac{u_{4,2}}{h^2} & f_{3,3} – frac{u_{4,3}+u_{3,4}}{h^2} end{bmatrix}$

En forma de matriz por bloques (para pensar en la simetrización):

$latex frac{1}{h^2} begin{bmatrix} -4 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \ 1 & -4 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \ 0 & 1 & -4 & 0 & 0 & 1 & 0 & 0 & 0 \ 1 & 0 & 0 & -4 & 1 & 0 & 1 & 0 & 0 \ 0 & 1 & 0 & 1 & -4 & 1 & 0 & 1 & 0 \ 0 & 0 & 1 & 0 & 1 & -4 & 0 & 0 & 1 \ 0 & 0 & 0 & 1 & 0 & 0 & -4 & 1 & 0 \ 0 & 0 & 0 & 0 & 1 & 0 & 1 & -4 & 1 \ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & -4 end{bmatrix} u_{i,j} = begin{bmatrix} f_{1,1} -frac{u_{1,0} + u_{0,1}}{h^2} \ f_{1,2} – frac{u_{0,2}}{h^2} \ f_{1,3} – frac{u_{0,3}+u_{1,4}}{h^2} \ f_{2,1} -frac{u_{2,0}}{h^2} \ f_{2,2} \ f_{2,3} – frac{u_{2,4}}{h^2} \ f_{3,1} – frac{u_{3,0}+u_{4,1}}{h^2} \ f_{3,2} – frac{u_{4,2}}{h^2} \ f_{3,3} – frac{u_{4,3}+u_{3,4}}{h^2} end{bmatrix}$

¿Qué pasa ahora si en lugar de conocer $latex u_{0,1}, u_{0,2}, u_{0,3}$ conocemos $latex frac{partial}{partial x}|_{0,1}u, frac{partial}{partial x}|_{0,2}u, frac{partial}{partial x}u|_{0,3}$? Necesitamos tres ecuaciones mas:

$latex frac{u_{-1,1} -2u_{0,1} + u_{1,1}}{h^2} + frac{u_{0,0} -2u_{0,1} + u_{0,2}}{h^2} = f_{0,1}$ para $latex i,j=0,1$

$latex frac{u_{-1,2} -2u_{0,2} + u_{1,2}}{h^2} + frac{u_{0,1} -2u_{0,2} + u_{0,3}}{h^2} = f_{0,2}$ para $latex i,j=0,2$

$latex frac{u_{-1,3} -2u_{0,3} + u_{1,3}}{h^2} + frac{u_{0,2} -2u_{0,3} + u_{0,4}}{h^2} = f_{0,3}$ para $latex i,j=0,3$

y

$latex frac{u_{1,1}-u_{-1,1}}{2h} = frac{partial}{partial x}|_{0,1}u Leftrightarrow u_{-1,1} = u_{1,1} – 2h , frac{partial}{partial x}|_{0,1}u$

$latex frac{u_{1,2}-u_{-1,2}}{2h} = frac{partial}{partial x}|_{0,2}u Leftrightarrow u_{-1,2} = u_{1,2} – 2h , frac{partial}{partial x}|_{0,2}u$

$latex frac{u_{1,3}-u_{-1,3}}{2h} = frac{partial}{partial x}|_{0,3}u Leftrightarrow u_{-1,3} = u_{1,3} – 2h , frac{partial}{partial x}|_{0,3}u$

por lo que:

$latex begin{bmatrix} f_{0,1} +frac{2h , frac{partial}{partial x}|_{0,1}u – u_{0,0}}{h^2} & f_{0,2} + frac{2h , frac{partial}{partial x}|_{0,2}u}{h^2} & f_{0,3} + frac{ 2h , frac{partial}{partial x}|_{0,3}u – u_{0,4}}{h^2} \ f_{1,1} -frac{u_{1,0}}{h^2} & f_{1,2} & f_{1,3} – frac{u_{1,4}}{h^2} \ f_{2,1} -frac{u_{2,0}}{h^2} & f_{2,2} & f_{2,3} – frac{u_{2,4}}{h^2} \ f_{3,1} – frac{u_{3,0}+u_{4,1}}{h^2} & f_{3,2} – frac{u_{4,2}}{h^2} & f_{3,3} – frac{u_{4,3}+u_{3,4}}{h^2} end{bmatrix}$

La matriz queda:

$latex frac{1}{h^2} begin{bmatrix} -4 & 1 & 0 & 2 & 0 & 0 & ldots \ 1 & -4 & 1 & 0 & 2 & 0 & ldots \ 0 & 1 & -4 & 0 & 0 & 2 & ldots \ 1 & 0 & 0 & -4 & 1 & 0 & ldots \ 0 & 1 & 0 & 1 & -4 & 1 & ldots \ 0 & 0 & 1 & 0 & 1 & -4 & ldots \ vdots & vdots & vdots & vdots & vdots & vdots & ddots end{bmatrix} $

Que podemos simetrizar:

$latex frac{1}{h^2} begin{bmatrix} -2 & frac{1}{2} & 0 & 1 & 0 & 0 & ldots \ frac{1}{2} & -2 & frac{1}{2} & 0 & 1 & 0 & ldots \ 0 & frac{1}{2} & -2 & 0 & 0 & 1 & ldots \ 1 & 0 & 0 & -4 & 1 & 0 & ldots \ 0 & 1 & 0 & 1 & -4 & 1 & ldots \ 0 & 0 & 1 & 0 & 1 & -4 & ldots \ vdots & vdots & vdots & vdots & vdots & vdots & ddots end{bmatrix} $

con:

$latex begin{bmatrix} frac{1}{2}(f_{0,1} +frac{2h , frac{partial}{partial x}|_{0,1}u – u_{0,0}}{h^2}) & frac{1}{2}(f_{0,2} + frac{2h , frac{partial}{partial x}|_{0,2}u}{h^2}) & frac{1}{2}(f_{0,3} + frac{ 2h , frac{partial}{partial x}|_{0,3}u – u_{0,4}}{h^2}) \ f_{1,1} -frac{u_{1,0}}{h^2} & f_{1,2} & f_{1,3} – frac{u_{1,4}}{h^2} \ f_{2,1} -frac{u_{2,0}}{h^2} & f_{2,2} & f_{2,3} – frac{u_{2,4}}{h^2} \ f_{3,1} – frac{u_{3,0}+u_{4,1}}{h^2} & f_{3,2} – frac{u_{4,2}}{h^2} & f_{3,3} – frac{u_{4,3}+u_{3,4}}{h^2} end{bmatrix}$

Si las condiciones las tenemos sobre la derivada en el extremo opuesto llegaremos a la misma estructura pero en la parte inferior de la frontera y de la matriz.

Si las condiciones las tenemos sobre derivadas en la otra dirección, podemos llegar también a estas estructuras tomando el orden de variables donde tiene prioridad la variable contraria a la tomada en los casos anteriores.

Tags: , , , , ,

En el post anterior hablamos sobre condiciones de frontera y su transferencia entre mallas pero no comentamos en el caso de que las condición haga referencia al valor de la derivada y no al de la función: condición de Neumann.

En $latex 1D$ supongamos que ahora tenemos $latex frac{partial^2}{partial x^2}u = f$ en $latex [a,b]$ con $latex u(a)=u_a$ pero $latex frac{partial}{partial x} = du_b$. Suponiendo de nuevo $latex n=8$, las ecuaciones nos quedan:

$latex frac{u_0 -2u_1 + u_2}{h^2} = f_1$ para $latex i=1$,

$latex frac{u_1 -2u_2 + u_3}{h^2} = f_2$ para $latex i=2$,

$latex frac{u_2 -2u_3 + u_4}{h^2} = f_3$ para $latex i=3$,

$latex frac{u_3 -2u_4 + u_5}{h^2} = f_4$ para $latex i=4$,

$latex frac{u_4 -2u_5 + u_6}{h^2} = f_5$ para $latex i=5$,

$latex frac{u_5 -2u_6 + u_7}{h^2} = f_6$ para $latex i=6$,

$latex frac{u_6 -2u_7 + u_8}{h^2} = f_7$ para $latex i=7$,

La única diferencia con respecto al caso anterior es que, en la primera ecuación, desconocemos el valor de $latex u_0$ pero  conocemos el de su primera derivada. Sabemos que:

$latex frac{u_1 – u_{-1}}{2h} = frac{d}{dx}u_{0} = du_0$,

que, despejando, nos da:

$latex u_1 – u_{-1} = 2h , du_0 Leftrightarrow u_{-1} = u_1 – 2h , du_0$,

Como tenemos una incognita mas por determinar, añadimos una nueva ecuación:

$latex frac{u_{-1} -2u_0 + u_1}{h^2} = f_0$ para $latex i=0$,

donde reescribimos el valor de $latex u_{-1}$ según acabamos de determinar:

$latex frac{ u_1 – 2h , du_0 -2u_0 + u_1}{h^2} = frac{ -2u_0 + 2u_1 – 2h , du_0}{h^2} = f_0$.

Por lo tanto,  en forma matricial tenemos:

$latex frac{1}{h^2} begin{bmatrix} -1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \ 1 & -2 & 1 & 0 & 0 & 0 & 0 &0 \ 0 & 1 & -2 & 1 & 0 & 0 & 0 & 0\ 0 & 0 & 1 & -2 & 1 & 0 & 0 &0 \ 0 & 0 & 0 & 1 & -2 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 & 1 & -2 & 1 & 0 \ 0 & 0 & 0 & 0 & 0 & 1 & -2 & 1 \ 0 & 0 & 0 & 0 & 0 & 0 & 1 & -2 end{bmatrix} begin{bmatrix} u_0 \ u_1 \ u_2 \ u_3 \ u_4 \ u_5 \ u_6 \u_7 end{bmatrix} = begin{bmatrix} frac{1}{2} (f_0 + frac{2h , du_0}{h^2}) \ f_1 \ f_2 \ f_3 \f_4 \ f_5 \ f_6 \ f_7 – frac{u_8}{h^2}end{bmatrix}$.

De la misma manera, en el caso por el otro extremo, llegariamos a:

$latex frac{1}{h^2} begin{bmatrix} -2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \ 1 & -2 & 1 & 0 & 0 & 0 & 0 &0 \ 0 & 1 & -2 & 1 & 0 & 0 & 0 & 0\ 0 & 0 & 1 & -2 & 1 & 0 & 0 &0 \ 0 & 0 & 0 & 1 & -2 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 & 1 & -2 & 1 & 0 \ 0 & 0 & 0 & 0 & 0 & 1 & -2 & 1 \ 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 end{bmatrix} begin{bmatrix} u_1 \ u_2 \ u_3 \ u_4 \ u_5 \ u_6 \ u_7 \u_8 end{bmatrix} = begin{bmatrix} f_1 – frac{u_0}{h^2} \ f_2 \ f_3 \ f_4 \f_5 \ f_6 \ f_7 \ frac{1}{2}(f_8 + frac{2h , du_8}{h^2})end{bmatrix}$.

En resumen, básicamente hay que hacer dos trabajos: en primer lugar, construir el termino independiente de manera apropiada para incorporar la información de las fronteras; en segundo, llegados a los extremos, escoger entre $latex -2$ y $latex -1$ en la diagonal en función de si es Dirichlet o Neumann.

Tags: , , , , ,

A ver si nos aclaramos sobre como van las condiciones frontera en las transiciones entre mallas…

Empezamos en $latex 1D$. Tenemos $latex Delta u = f$, o lo que es lo mismo, $latex u_{xx} = f$ (en este caso es una ODE pero bueno…) definida en $latex [a,b]$ con $latex u(a) = u_a$ y $latex u(b) = u_b$. Vamos a suponer una discretización en una malla con $latex n+1$ nodos con $latex u_i$ con $latex i=1..(n-1)$ puntos interiores y $latex u_0 = u_a$ y $latex u_n = u_b$. En la discretización tenemos:

$latex frac{u_{i-1} -2u_i + u_{i+1}}{h^2} = f_i$ donde $latex h = frac{1}{n}$.

Si escribimos todas las ecuaciones para todos los puntos interiores (si $latex n=8$ entonces $latex i=1..7$) tenemos :

$latex frac{u_0 -2u_1 + u_2}{h^2} = f_1$ para $latex i=1$,

$latex frac{u_1 -2u_2 + u_3}{h^2} = f_2$ para $latex i=2$,

$latex frac{u_2 -2u_3 + u_4}{h^2} = f_3$ para $latex i=3$,

$latex frac{u_3 -2u_4 + u_5}{h^2} = f_4$ para $latex i=4$,

$latex frac{u_4 -2u_5 + u_6}{h^2} = f_5$ para $latex i=5$,

$latex frac{u_5 -2u_6 + u_7}{h^2} = f_6$ para $latex i=6$,

$latex frac{u_6 -2u_7 + u_8}{h^2} = f_7$ para $latex i=7$,

que en forma matricial y despejando $latex u_0$ y $latex u_8$ que son conocidos queda:

$latex frac{1}{h^2} begin{bmatrix} -2 & 1 & 0 & 0 & 0 & 0 & 0 \ 1 & -2 & 1 & 0 & 0 & 0 & 0 \ 0 & 1 & -2 & 1 & 0 & 0 & 0 \ 0 & 0 & 1 & -2 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 & -2 & 1 & 0 \ 0 & 0 & 0 & 0 & 1 & -2 & 1 \ 0 & 0 & 0 & 0 & 0 & 1 & -2 end{bmatrix} begin{bmatrix} u_1 \ u_2 \ u_3 \ u_4 \ u_5 \ u_6 \u_7 end{bmatrix} = begin{bmatrix} f_1 – frac{u_0}{h^2} \ f_2 \ f_3 \f_4 \ f_5 \ f_6 \ f_7 – frac{u_8}{h^2}end{bmatrix}$.

Cuando pasamos a una malla de $latex n=4$ tenemos que la matriz es $latex 3 times 3$ y tiene la misma estructura pero con $latex frac{1}{(2h)^2}$. En este caso, si restringimos la $latex vec{f}$  nos queda:

$latex frac{1}{4} begin{bmatrix} 1 & 2 & 1 & 0 & 0 & 0 & 0 \ 0 & 0 & 1 & 2 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 & 1 & 2 & 1 end{bmatrix} begin{bmatrix} f_1 – frac{u_0}{h^2} \ f_2 \ f_3 \ f_4 \ f_5 \ f_6 \ f_7 – frac{u_8}{h^2} end{bmatrix} = begin{bmatrix} frac{f_1 – frac{u_0}{h^2} +2 f_2 + f_3}{4} \ frac{f_3+2 f_4 + f_5}{4} \ frac{f_5 + 2 f_6 + f7 – frac{u_8}{h^2}}{4}end{bmatrix}$.

¿Qué pasa en este caso si restringimos por separado las fuentes y los valores en la frontera? Por un lado tenemos:

$latex frac{1}{4} begin{bmatrix} 1 & 2 & 1 & 0 & 0 & 0 & 0 \ 0 & 0 & 1 & 2 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 & 1 & 2 & 1 end{bmatrix} begin{bmatrix} f_1 \ f_2 \ f_3 \ f_4 \ f_5 \ f_6 \ f_7 end{bmatrix} = begin{bmatrix} frac{f_1 +2 f_2 + f_3}{4} \ frac{f_3+2 f_4 + f_5}{4} \ frac{f_5 + 2 f_6 + f7 }{4}end{bmatrix}$,

y por otro, como $latex u_0$ y $latex u_8$ no cambian, al despejar nos quedan $latex -frac{u_0}{(2h)^2}$ y $latex -frac{u_8}{(2h)^2}$, por lo que tenemos:

$latex begin{bmatrix} frac{f_1 +2 f_2 + f_3}{4} – frac{u_0}{(2h)^2} \ frac{f_3+2 f_4 + f_5}{4} \ frac{f_5 + 2 f_6 + f7 }{4} – frac{u_8}{(2h)^2} end{bmatrix}$,

que es equivalente a lo encontrado anteriormente.

¿Que pasará en $latex 2D$? Vamos a verlo. Tenemos ahora:

$latex Delta u = f$

como:

$latex frac{partial^2}{partial x^2} u(x,y) + frac{partial^2}{partial y^2} u(x,y) = f(x.y)$.

Suponemos $latex n=8$. Por un lado tenemos que las fuentes menos las fronteras nos da:

$latex begin{bmatrix} f_{1,1}-frac{u_{1,0}+u_{0,1}}{h^2} & f_{1,2}-frac{u_{0,2}}{h^2} & f_{1,3}-frac{u_{0,3}}{h^2} & f_{1,4}-frac{u_{0,4}}{h^2} & f_{1,5}-frac{u_{0,5}}{h^2} & f_{1,6}-frac{u_{0,6}}{h^2} & f_{1,7}-frac{u_{1,8}+u_{0,7}}{h^2} \ f_{2,1}-frac{u_{2,0}}{h^2} & f_{2,2} & f_{2,3} & f_{2,4} & f_{2,5} & f_{2,6} & f_{2,7}-frac{u_{2,8}}{h^2} \ f_{3,1}-frac{u_{3,0}}{h^2} & f_{3,2} & f_{3,3} & f_{3,4} & f_{3,5} & f_{3,6} & f_{3,7}-frac{u_{3,8}}{h^2} \ f_{4,1}-frac{u_{4,0}}{h^2} & f_{4,2} & f_{4,3} & f_{4,4} & f_{4,5} & f_{4,6} & f_{4,7}-frac{u_{4,8}}{h^2} \ f_{5,1}-frac{u_{5,0}}{h^2} & f_{5,2} & f_{5,3} & f_{5,4} & f_{5,5} & f_{5,6} & f_{5,7}-frac{u_{5,8}}{h^2} \ f_{6,1}-frac{u_{6,0}}{h^2} & f_{6,2} & f_{6,3} & f_{6,4} & f_{6,5} & f_{6,6} & f_{6,7}-frac{u_{6,8}}{h^2} \ f_{7,1}-frac{u_{7,0}+u_{8,1}}{h^2} & f_{7,2}-frac{u_{8,2}}{h^2} & f_{7,3}-frac{u_{8,3}}{h^2} & f_{7,4}-frac{u_{8,4}}{h^2} & f_{7,5}-frac{u_{8,5}}{h^2} & f_{7,6}-frac{u_{8,6}}{h^2} & f_{7,7}-frac{u_{8,7}+u_{7,8}}{h^2} end{bmatrix}$.

Vamos a calcular uno a uno los elementos de la nueva malla mediante los dos métodos (restricción directa sobre la matriz anterior o restricción sobre las fronteras)  ya que con que salga alguno distinto ya podremos concluir su no equivalencia. Empezamos:

$latex frac{u_{1,2}^{2h}+u_{2,1}^{2h}-4u_{1,1}^{2h}}{(2h)^2} = frac{1}{16} [ f_{1,1}-frac{u_{1,0}+u_{0,1}}{h^2}+f_{1,3}-frac{u_{0,3}}{h^2}+f_{3,1}-frac{u_{3,0}}{h^2}+f_{3,3} + $

$latex + 2(f_{1,2}-frac{u_{0,2}}{h^2} + f_{2,1}-frac{u_{2,0}}{h^2} +f_{2,3} + f_{4,2} ) + 4 f_{2,2} ]$

Si primero aplicamos la restricción a las fronteras nos quedan:

$latex begin{bmatrix} frac{u_{0,1} + 2u_{0,2} + u_{0,3}}{4} & frac{u_{0,3} + 2u_{0,4} + u_{0,5}}{4} & frac{u_{0,5} + 2u_{0,6} + u_{0,7}}{4} end{bmatrix}$,

$latex begin{bmatrix} frac{u_{1,0} + 2u_{2,0} + u_{3,0}}{4} \ frac{u_{3,0} + 2u_{4,0} + u_{5,0}}{4} \ frac{u_{5,0} + 2u_{6,0} + u_{7,0}}{4} end{bmatrix}$ $latex ,,,,,,,$ $latex begin{bmatrix} frac{u_{1,8} + 2u_{2,8} + u_{3,8}}{4} \ frac{u_{3,8} + 2u_{4,8} + u_{5,8}}{4} \ frac{u_{5,8} + 2u_{6,8} + u_{7,8}}{4} end{bmatrix}$

$latex frac{1}{4}begin{bmatrix} u_{8,1} + 2u_{8,2} + u_{8,3} & u_{8,3} + 2u_{8,4} + u_{8,5} & u_{8,5} + 2u_{8,6} + u_{8,7} end{bmatrix}$,

y al calcular el primer término:

$latex frac{1}{16} [ f_{1,1} + f_{1,3} + f_{3,1} + f_{3,3} + 2(f_{1,2} + f_{2,1} + f_{2,3} + f_{4,2}) + 4 f_{2,2} ]$

que combinado con las fronteras, tenemos:

$latex frac{u_{1,2}^{2h}+u_{2,1}^{2h}-4u_{1,1}^{2h}}{(2h)^2} = frac{1}{16} [ f_{1,1} + f_{1,3} + f_{3,1} + f_{3,3} +$

$latex + 2(f_{1,2} + f_{2,1} + f_{2,3} + f_{4,2}) + 4 f_{2,2} ] – $

$latex – frac{1}{4}frac{u_{0,1} + 2u_{0,2} + u_{0,3} + u_{1,0} + 2u_{2,0} + u_{3,0}}{(2h)^2}$

y que es lo mismo que habíamos obtenido…

FireStats icon Powered by FireStats