aproximación FCF

You are currently browsing articles tagged aproximación FCF.

En la discretización que hicimos teníamos dos sistemas acoplados, uno para las $latex X^i$ y otro para las $latex beta^i$. Procedemos ahora a desacoplarlos.

Para empezar, tomamos la divergencia (plana) del sistema:

$latex Delta X^i = 8 pi f^{ij} S^*_j – frac{1}{3}mathcal{D}^i mathcal{D}_j X^j$

y, teniendo en cuenta que $latex mathcal{D}$ conmuta con $latex Delta$ (métrica plana), tenemos:

$latex Delta (mathcal{D}_i X^i) = 8 pi mathcal{D}^j S^*_j – frac{1}{3} Delta (mathcal{D}_j X^j)$,

por lo que:

$latex Delta (mathcal{D}_i X^i) = frac{3}{4} 8 pi mathcal{D}^j S^*_j$.

De esta manera, si definimos $latex Theta_X := mathcal{D}_i X^i$, nos queda:

$latex Delta Theta_X = frac{3}{4} 8 pi mathcal{D}^j S^*_j = 6 pi (partial_x S^*_x + partial_y S^*_y +partial_z S^*_z )$,

que discretizado queda:

$latex frac{(Theta_X)_{i-1,j,k}-2(Theta_X)_{i,j,k}+(Theta_X)_{i+1,j,k}}{h_x^2} + $

$latex frac{(Theta_X)_{i,j-1,k}-2(Theta_X)_{i,j,k}+(Theta_X)_{i,j+1,k}}{h_y^2} + $

$latex frac{(Theta_X)_{i,j,k-1}-2(Theta_X)_{i,j,k}+(Theta_X)_{i,j,k+1}}{h_z^2} = $

$latex = 6 pi (partial_x S^*_x + partial_y S^*_y +partial_z S^*_z )_{i,j,k} $,

donde inicialmente:

$latex (S^*_a)_{i,j,k} = (psi^6)_{i,j,k}rho_{i,j,k}h_{i,j,k}w^2_{i,j,k}(v_a)_{i,j,k}$,

$latex (partial_x S^*_x + partial_y S^*_y +partial_z S^*_z )_{i,j,k} = $

$latex frac{(S^*_x)_{i+1,j,k}-(S^*_x)_{i-1,j,k}}{2h_x} + frac{(S^*_x)_{i,j+1,k}-(S^*_x)_{i,j-1,k}}{2h_y} + frac{(S^*_x)_{i,j,k+1}-(S^*_x)_{i,j,k-1}}{2h_z}$

y que es lineal.

El primer sistema acoplado de ecuaciones quedaría ahora:

$latex partial_{xx} X^x + partial_{yy} X^x + partial_{zz} X^x = 8 pi S^*_x – frac{1}{3} partial_x Theta_X approx $

$latex approx frac{X^x_{i-1,j,k}-2X^x_{i,j,k}+X^x_{i+1,j,k}}{h_x^2} + frac{X^x_{i,j-1,k}-2X^x_{i,j,k}+X^x_{i,j+1,k}}{h_y^2} + frac{X^x_{i,j,k-1}-2X^x_{i,j,k}+X^x_{i,j,k+1}}{h_z^2} = $

$latex = 8 pi (S^*_x)_{i,j,k} – frac{1}{3} (partial_x Theta_X)_{i,j,k}$,

¡que vuelve a ser lineal!

Continuamos con:

$latex partial_{xx} X^y + partial_{yy} X^y + partial_{zz} X^y = 8 pi S^*_y – frac{1}{3} partial_y Theta_X approx $

$latex approx frac{X^y_{i-1,j,k}-2X^y_{i,j,k}+X^y_{i+1,j,k}}{h_x^2} + frac{X^y_{i,j-1,k}-2X^y_{i,j,k}+X^y_{i,j+1,k}}{h_y^2} + frac{X^y_{i,j,k-1}-2X^y_{i,j,k}+X^y_{i,j,k+1}}{h_z^2} = $

$latex = 8 pi (S^*_y)_{i,j,k} – frac{1}{3} (partial_y Theta_X)_{i,j,k}$

y, finalmente:

$latex partial_{xx} X^z + partial_{yy} X^z + partial_{zz} X^z = 8 pi S^*_z – frac{1}{3} partial_z Theta_X approx $

$latex approx frac{X^z_{i-1,j,k}-2X^z_{i,j,k}+X^z_{i+1,j,k}}{h_x^2} + frac{X^z_{i,j-1,k}-2X^z_{i,j,k}+X^z_{i,j+1,k}}{h_y^2} + frac{X^z_{i,j,k-1}-2X^z_{i,j,k}+X^z_{i,j,k+1}}{h_z^2} = $

$latex = 8 pi (S^*_z)_{i,j,k} – frac{1}{3} (partial_z Theta_X)_{i,j,k}$,

donde calculamos al principio:

$latex (partial_x Theta_X)_{i,j,k} = frac{(Theta_X)_{i+1,j,k}-(Theta_X)_{i-1,j,k}}{2h_x}$

$latex (partial_y Theta_X)_{i,j,k} = frac{(Theta_X)_{i,j+1,k}-(Theta_X)_{i,j-1,k}}{2h_y}$

$latex (partial_z Theta_X)_{i,j,k} = frac{(Theta_X)_{i,j,k+1} – (Theta_X)_{i,j,k-1}}{2h_z}$

A continuación, discretizamos las siguientes ecuaciones:

$latex hat{A}^{xx} = 2 partial_x X^x – frac{2}{3} (partial_x X^x + partial_y X^y + partial_z X^z) approx$

$latex approx frac{2}{3}frac{X^x_{i+1,j,k}-X^x_{i-1,j,k}}{h_x} -frac{1}{3} frac{X^y_{i,j+1,k}-X^y_{i,j-1,k}}{h_y} – frac{1}{3} frac{X^z_{i,j,k+1}-X^z_{i,j,k-1}}{h_z}) = hat{A}^{xx}_{i,j,k}$,

$latex hat{A}^{xy} = hat{A}^{yx}= partial_x X^y + partial_y X^x approx $

$latex approx frac{X^y_{i+1,j,k}-X^y_{i-1,j,k}}{2h_x} + frac{X^x_{i,j+1,k}-X^x_{i,j-1,k}}{2h_y} = hat{A}^{xy}_{i,j,k} = hat{A}^{yx}_{i,j,k}$,

$latex hat{A}^{xz} = hat{A}^{zx} = partial_x X^z + partial_z X^x approx $

$latex approx frac{X^z_{i+1,j,k}-X^z_{i-1,j,k}}{2h_x} + frac{X^x_{i,j,k+1}-X^x_{i,j,k-1}}{2h_z} = hat{A}^{xz}_{i,j,k} = hat{A}^{zx}_{i,j,k}$,

$latex hat{A}^{yy} = 2 partial_y X^y – frac{2}{3} (partial_x X^x + partial_y X^y + partial_z X^z) approx $

$latex approx -frac{1}{3}frac{X^x_{i+1,j,k}-X^x_{i-1,j,k}}{h_x} +frac{2}{3} frac{X^y_{i,j+1,k}-X^y_{i,j-1,k}}{h_y} – frac{1}{3} frac{X^z_{i,j,k+1}-X^z_{i,j,k-1}}{h_z}) = hat{A}^{yy}_{i,j,k}$,

$latex hat{A}^{yz} = hat{A}^{zy} = partial_y X^z + partial_z X^y approx $

$latex approx frac{X^z_{i,j+1,k}-X^z_{i,j-1,k}}{2h_y} + frac{X^y_{i,j,k+1}-X^y_{i,j,k-1}}{2h_z} = hat{A}^{yz}_{i,j,k} = hat{A}^{zy}_{i,j,k}$,

$latex hat{A}^{zz} = 2 partial_z X^z – frac{2}{3} (partial_x X^x + partial_y X^y + partial_z X^z) approx $

$latex approx -frac{1}{3}frac{X^x_{i+1,j,k}-X^x_{i-1,j,k}}{h_x} -frac{1}{3} frac{X^y_{i,j+1,k}-X^y_{i,j-1,k}}{h_y} + frac{2}{3} frac{X^z_{i,j,k+1}-X^z_{i,j,k-1}}{h_z}) = hat{A}^{zz}_{i,j,k}$.

Por tanto, la siguiente ecuación:

$latex Delta psi = -2 pi psi^{-1} E^* – psi^{-7} frac{(hat{A}^{xx})^2+(hat{A}^{yy})^2+(hat{A}^{zz})^2+2(hat{A}^{xy})^2+2(hat{A}^{xz})^2+2(hat{A}^{yz})^2}{8}$

queda:

$latex approx frac{psi_{i-1,j,k}-2psi_{i,j,k}+psi_{i+1,j,k}}{h_x^2} + frac{psi_{i,j-1,k}-2psi_{i,j,k}+psi_{i,j+1,k}}{h_y^2} + frac{psi_{i,j,k-1}-2psi_{i,j,k}+psi_{i,j,k+1}}{h_z^2} = $

$latex =-2 pi psi^{-1}_{i,j,k} E^*_{i,j,k} – $

$latex – frac{psi^{-7}_{i,j,k}}{8} ( (hat{A}^{xx}_{i,j,k})^2+(hat{A}^{yy}_{i,j,k})^2+(hat{A}^{zz}_{i,j,k})^2+2(hat{A}^{xy}_{i,j,k})^2+2(hat{A}^{xz}_{i,j,k})^2+2(hat{A}^{yz}_{i,j,k})^2 ) $,

con:

$latex partial_{psi_{i,j,k}} F(psi_{i,j,k}) = -2 ( frac{1}{h_x^2} + frac{1}{h_y^2} + frac{1}{h_z^2} ) -2 pi psi_{i,j,k}^{-2} E^*_{i,j,k} – $

$latex – frac{7}{8} psi^{-8}_{i,j,k} ( (hat{A}^{xx}_{i,j,k})^2+(hat{A}^{yy}_{i,j,k})^2+(hat{A}^{zz}_{i,j,k})^2+2(hat{A}^{xy}_{i,j,k})^2+2(hat{A}^{xz}_{i,j,k})^2+2(hat{A}^{yz}_{i,j,k})^2 )$,

donde:

$latex E^*_{i,j,k} = psi^{6}_{i,j,k} (D_{i,j,k}+tau_{i,j,k})$

y la ecuación:

$latex Delta (alphapsi) = (alpha psi) (2 pi psi^{-2} (E^*+2S^*) + $

$latex + frac{7}{8} psi^{-8} ((hat{A}^{xx})^2+(hat{A}^{yy})^2+(hat{A}^{zz})^2+2(hat{A}^{xy})^2+2(hat{A}^{xz})^2+2(hat{A}^{yz})^2) )$

como:

$latex approx frac{(alphapsi)_{i-1,j,k} – 2(alphapsi)_{i,j,k}+(alphapsi)_{i+1,j,k}}{h_x^2} + $

$latex + frac{(alphapsi)_{i,j-1,k}-2(alphapsi)_{i,j,k}+(alphapsi)_{i,j+1,k}}{h_y^2} + $

$latex + frac{(alphapsi)_{i,j,k-1}-2(alphapsi)_{i,j,k}+(alphapsi)_{i,j,k+1}}{h_z^2} = $

$latex = (alpha psi)_{i,j,k} (2 pi psi^{-2}_{i,j,k} (E^*_{i,j,k}+2S^*_{i,j,k}) + $

$latex + frac{7}{8} psi^{-8}_{i,j,k} ((hat{A}^{xx}_{i,j,k})^2+(hat{A}^{yy}_{i,j,k})^2+(hat{A}^{zz}_{i,j,k})^2+2(hat{A}^{xy}_{i,j,k})^2+2(hat{A}^{xz}_{i,j,k})^2+2(hat{A}^{yz}_{i,j,k})^2) )$,

donde:

$latex partial_{(alpha psi)_{i,j,k}} F((alpha psi)_{i,j,k}) = -2 ( frac{1}{h_x^2} + frac{1}{h_y^2} + frac{1}{h_z^2} ) – 2 pi psi^{-2}_{i,j,k} (E^*_{i,j,k}+2S^*_{i,j,k}) + $

$latex – frac{7}{8} psi^{-8}_{i,j,k} ((hat{A}^{xx}_{i,j,k})^2+(hat{A}^{yy}_{i,j,k})^2+(hat{A}^{zz}_{i,j,k})^2+2(hat{A}^{xy}_{i,j,k})^2+2(hat{A}^{xz}_{i,j,k})^2+2(hat{A}^{yz}_{i,j,k})^2) )$

con:

$latex S^*_{i,j,k} = psi^6_{i,j,k}(rho_{i,j,k}h_{i,j,k}(w^2_{i,j,k}-1) + 3 p_{i,j,k})$.

Finalmente, tenemos el otro sistema acoplado:

$latex Delta beta^i = mathcal{D}_j(2 alpha psi^{-6} hat{A}^{ij}) – frac{1}{3} mathcal{D}^i(mathcal{D}_j beta^j)$,

con el que procedemos de igual manera que con las $latex X^i$:

$latex Delta(mathcal{D}_i beta^i) = mathcal{D}_i (mathcal{D}_j (2 alpha psi^{-6} hat{A}^{ij})) – frac{1}{3} Delta (mathcal{D}_i beta^i)$,

de manera que:

$latex Delta Theta_beta = frac{3}{4} mathcal{D}^i (mathcal{D}_j (2 alpha psi^{-6} hat{A}^{ij})) =$

$latex frac{3}{2}(partial_{xx}(alpha psi^{-6} hat{A}^{xx}) + partial_{yy}(alpha psi^{-6} hat{A}^{yy}) + partial_{zz}(alpha psi^{-6} hat{A}^{zz})$,

con:

$latex Theta_beta := mathcal{D}_i beta^i$,

que discretizada queda:

$latex frac{(Theta_beta)_{i-1,j,k}-2(Theta_beta)_{i,j,k}+(Theta_beta)_{i+1,j,k}}{h_x^2} + $

$latex frac{(Theta_beta)_{i,j-1,k}-2(Theta_beta)_{i,j,k}+(Theta_beta)_{i,j+1,k}}{h_y^2} + $

$latex frac{(Theta_beta)_{i,j,k-1}-2(Theta_beta)_{i,j,k}+(Theta_beta)_{i,j,k+1}}{h_z^2} = $

$latex frac{3}{2}((partial_{xx}(alpha psi^{-6} hat{A}^{xx}))_{i,j,k} + (partial_{yy}(alpha psi^{-6} hat{A}^{yy}))_{i,j,k} + (partial_{zz}(alpha psi^{-6} hat{A}^{zz})_{i,j,k})$,

De esta manera, tenemos:

$latex Delta beta^x = partial_x (2 alpha psi^{-6} hat{A}^{xx}) + partial_y (2 alpha psi^{-6} hat{A}^{xy}) + partial_z (2 alpha psi^{-6} hat{A}^{xz}) – frac{1}{2} partial_x Theta_beta approx $

$latex approx frac{beta^x_{i-1,j,k}-2beta^x_{i,j,k}+beta^x_{i+1,j,k}}{h_x^2} + frac{beta^x_{i,j-1,k}-2beta^x_{i,j,k}+beta^x_{i,j+1,k}}{h_y^2} + frac{beta^x_{i,j,k-1}-2beta^x_{i,j,k}+beta^x_{i,j,k+1}}{h_z^2} = $

$latex = (partial_x (2 alpha psi^{-6} hat{A}^{xx}))_{i,j,k} + (partial_y (2 alpha psi^{-6} hat{A}^{xy}))_{i,j,k} + (partial_z (2 alpha psi^{-6} hat{A}^{xz}) )_{i,j,k} – $

$latex – frac{1}{3} (partial_x Theta_beta)_{i,j,k}$.

De la misma manera:

$latex Delta beta^y = partial_x (2 alpha psi^{-6} hat{A}^{yx}) + partial_y (2 alpha psi^{-6} hat{A}^{yy}) + partial_z (2 alpha psi^{-6} hat{A}^{yz}) – frac{1}{3} partial_y Theta_beta approx $

$latex approx frac{beta^y_{i-1,j,k}-2beta^y_{i,j,k}+beta^y_{i+1,j,k}}{h_x^2} + frac{beta^y_{i,j-1,k}-2beta^y_{i,j,k}+beta^y_{i,j+1,k}}{h_y^2} + frac{beta^y_{i,j,k-1}-2beta^y_{i,j,k}+beta^y_{i,j,k+1}}{h_z^2} = $

$latex = (partial_x (2 alpha psi^{-6} hat{A}^{yx}))_{i,j,k} + (partial_y (2 alpha psi^{-6} hat{A}^{yy}))_{i,j,k} + (partial_z (2 alpha psi^{-6} hat{A}^{yz}) )_{i,j,k} – $

$latex – frac{1}{3} (partial_y Theta_beta)_{i,j,k}$.

Y, por último:

$latex Delta beta^z = partial_x (2 alpha psi^{-6} hat{A}^{zx}) + partial_y (2 alpha psi^{-6} hat{A}^{zy}) + partial_z (2 alpha psi^{-6} hat{A}^{zz}) – frac{1}{3} partial_z Theta_beta approx $

$latex approx frac{beta^z_{i-1,j,k}-2beta^z_{i,j,k}+beta^z_{i+1,j,k}}{h_x^2} + frac{beta^z_{i,j-1,k}-2beta^z_{i,j,k}+beta^z_{i,j+1,k}}{h_y^2} + frac{beta^z_{i,j,k-1}-2beta^z_{i,j,k}+beta^z_{i,j,k+1}}{h_z^2} = $

$latex = (partial_x (2 alpha psi^{-6} hat{A}^{zx}))_{i,j,k} + (partial_y (2 alpha psi^{-6} hat{A}^{zy}))_{i,j,k} + (partial_z (2 alpha psi^{-6} hat{A}^{zz}) )_{i,j,k} – $

$latex – frac{1}{3} (partial_z Theta_beta)_{i,j,k}$.

Parece que, del sistema no lineal acoplado inicial, hemos llegado a un sistema de diez ecuaciones desacopladas donde ocho de ellas son lineales y solo dos son no linales. No pinta mal. Ya escribiremos próximamente sobre las condiciones de contorno…

Tags: , , , ,

Vamos a discretizar las ecuaciones que comentamos en este post. Para ello, discretizaremos las derivadas de la siguiente manera:

$latex partial_x u = frac{u_{i+1,j,k}-u_{i-1,j,k}}{2h_x}$,

$latex partial_y u = frac{u_{i,j+1,k}-u_{i,j-1,k}}{2h_y}$,

$latex partial_z u = frac{u_{i,j,k+1}-u_{i,j,k-1}}{2h_z}$,

$latex partial_{xx} u = frac{u_{i-1,j,k}-2u_{i,j,k}+u_{i+1,j,k}}{h_x^2}$,

$latex partial_{yy} u = frac{u_{i,j-1,k}-2u_{i,j,k}+u_{i,j+1,k}}{h_y^2}$,

$latex partial_{zz} u = frac{u_{i,j,k-1}-2u_{i,j,k}+u_{i,j,k+1}}{h_z^2}$,

$latex partial_{xy} u = frac{u_{i-1,j-1,k}-u_{i+1,j-1,k}-u_{i-1,j+1,k}+u_{i+1,j+1,k}}{4h_xh_y}$,

$latex partial_{xz} u = frac{u_{i-1,j,k-1}-u_{i+1,j,k-1}-u_{i-1,j,k+1}+u_{i+1,j,k+1}}{4h_xh_z}$,

$latex partial_{yz} u = frac{u_{i,j-1,k-1}-u_{i,j+1,k-1}-u_{i,j-1,k+1}+u_{i,j+1,k+1}}{4h_yh_z}$.

El primer grupo de ecuaciones quedaría:

$latex partial_{xx} X^x + partial_{yy} X^x + partial_{zz} X^x = 8 pi psi^6 rho h w^2 v_x – frac{1}{3} partial_x (partial_x X^x + partial_y X^y + partial_z X^z) approx $

$latex approx frac{X^x_{i-1,j,k}-2X^x_{i,j,k}+X^x_{i+1,j,k}}{h_x^2} + frac{X^x_{i,j-1,k}-2X^x_{i,j,k}+X^x_{i,j+1,k}}{h_y^2} + frac{X^x_{i,j,k-1}-2X^x_{i,j,k}+X^x_{i,j,k+1}}{h_z^2} = $

$latex = 8 pi psi^6_{i,j,k} rho_{i,j,k} h_{i,j,k} w^2_{i,j,k} v_{x_{i,j,k}} – frac{1}{3} ( frac{X^x_{i-1,j,k}-2X^x_{i,j,k}+X^x_{i+1,j,k}}{h_x^2} +$

$latex + frac{X^y_{i-1,j-1,k}-X^y_{i+1,j-1,k}-X^y_{i-1,j+1,k}+X^y_{i+1,j+1,k}}{4h_xh_y} +$

$latex + frac{X^z_{i-1,j,k-1}-X^z_{i+1,j,k-1}-X^z_{i-1,j,k+1}+X^z_{i+1,j,k+1}}{4h_xh_z} )$,

y además, para los esquemas de relajación no lineales, reescribimos la igualdad anterior como $latex F(X^x_{i,j,k})=0$ y entonces tenemos:

$latex partial_{X^x_{i,j,k}} F(X^x_{i,j,k}) = -2 ( frac{4}{3}frac{1}{h_x^2} + frac{1}{h_y^2} + frac{1}{h_z^2})$.

$latex partial_{xx} X^y + partial_{yy} X^y + partial_{zz} X^y = 8 pi psi^6 rho h w^2 v_y – frac{1}{3} partial_y (partial_x X^x + partial_y X^y + partial_z X^z) approx $

$latex approx frac{X^y_{i-1,j,k}-2X^y_{i,j,k}+X^y_{i+1,j,k}}{h_x^2} + frac{X^y_{i,j-1,k}-2X^y_{i,j,k}+X^y_{i,j+1,k}}{h_y^2} + frac{X^y_{i,j,k-1}-2X^y_{i,j,k}+X^y_{i,j,k+1}}{h_z^2} = $

$latex = 8 pi psi^6_{i,j,k} rho_{i,j,k} h_{i,j,k} w^2_{i,j,k} v_{y_{i,j,k}} – frac{1}{3} ( frac{X^x_{i-1,j-1,k}-X^x_{i+1,j-1,k}-X^x_{i-1,j+1,k}+X^x_{i+1,j+1,k}}{4h_xh_y} +$

$latex + frac{X^y_{i,j-1,k}-2X^y_{i,j,k}+X^y_{i,j+1,k}}{h_y^2} +$

$latex + frac{X^z_{i-1,j,k-1}-X^z_{i+1,j,k-1}-X^z_{i-1,j,k+1}+X^z_{i+1,j,k+1}}{4h_yh_z} )$,

con:

$latex partial_{X^y_{i,j,k}} F(X^y_{i,j,k}) = -2 ( frac{1}{h_x^2} +frac{4}{3} frac{1}{h_y^2} + frac{1}{h_z^2})$.

$latex partial_{xx} X^z + partial_{yy} X^z + partial_{zz} X^z = 8 pi psi^6 rho h w^2 v_z – frac{1}{3} partial_z (partial_x X^x + partial_y X^y + partial_z X^z) approx $

$latex approx frac{X^z_{i-1,j,k}-2X^z_{i,j,k}+X^z_{i+1,j,k}}{h_x^2} + frac{X^z_{i,j-1,k}-2X^z_{i,j,k}+X^z_{i,j+1,k}}{h_y^2} + frac{X^z_{i,j,k-1}-2X^z_{i,j,k}+X^z_{i,j,k+1}}{h_z^2} = $

$latex = 8 pi psi^6_{i,j,k} rho_{i,j,k} h_{i,j,k} w^2_{i,j,k} v_{z_{i,j,k}} – frac{1}{3} ( frac{X^x_{i-1,j,k-1}-X^x_{i+1,j,k-1}-X^x_{i-1,j,k+1}+X^x_{i+1,j,k+1}}{4h_xh_z} +$

$latex + frac{X^y_{i,j-1,k-1}-X^y_{i,j+1,k-1}-X^y_{i,j-1,k+1}+X^y_{i,j+1,k+1}}{4h_yh_z} )$

$latex + frac{X^z_{i,j,k-1}-2X^z_{i,j,k}+X^z_{i,j,k+1}}{h_z^2}$

con:

$latex partial_{X^z_{i,j,k}} = F(X^z_{i,j,k}) = -2 ( frac{1}{h_x^2} + frac{1}{h_y^2} + frac{4}{3} frac{1}{h_z^2})$.

A continuación, discretizamos las siguientes ecuaciones:

$latex hat{A}^{xx} = 2 partial_x X^x – frac{2}{3} (partial_x X^x + partial_y X^y + partial_z X^z) approx$

$latex approx frac{2}{3}frac{X^x_{i+1,j,k}-X^x_{i-1,j,k}}{h_x} -frac{1}{3} frac{X^y_{i,j+1,k}-X^y_{i,j-1,k}}{h_y} – frac{1}{3} frac{X^z_{i,j,k+1}-X^z_{i,j,k-1}}{h_z}) = hat{A}^{xx}_{i,j,k}$,

$latex hat{A}^{xy} = hat{A}^{yx}= partial_x X^y + partial_y X^x approx $

$latex approx frac{X^y_{i+1,j,k}-X^y_{i-1,j,k}}{2h_x} + frac{X^x_{i,j+1,k}-X^x_{i,j-1,k}}{2h_y} = hat{A}^{xy}_{i,j,k} = hat{A}^{yx}_{i,j,k}$,

$latex hat{A}^{xz} = hat{A}^{zx} = partial_x X^z + partial_z X^x approx $

$latex approx frac{X^z_{i+1,j,k}-X^z_{i-1,j,k}}{2h_x} + frac{X^x_{i,j,k+1}-X^x_{i,j,k-1}}{2h_z} = hat{A}^{xz}_{i,j,k} = hat{A}^{zx}_{i,j,k}$,

$latex hat{A}^{yy} = 2 partial_y X^y – frac{2}{3} (partial_x X^x + partial_y X^y + partial_z X^z) approx $

$latex approx -frac{1}{3}frac{X^x_{i+1,j,k}-X^x_{i-1,j,k}}{h_x} +frac{2}{3} frac{X^y_{i,j+1,k}-X^y_{i,j-1,k}}{h_y} – frac{1}{3} frac{X^z_{i,j,k+1}-X^z_{i,j,k-1}}{h_z}) = hat{A}^{yy}_{i,j,k}$,

$latex hat{A}^{yz} = hat{A}^{zy} = partial_y X^z + partial_z X^y approx $

$latex approx frac{X^z_{i,j+1,k}-X^z_{i,j-1,k}}{2h_y} + frac{X^y_{i,j,k+1}-X^y_{i,j,k-1}}{2h_z} = hat{A}^{yz}_{i,j,k} = hat{A}^{zy}_{i,j,k}$,

$latex hat{A}^{zz} = 2 partial_z X^z – frac{2}{3} (partial_x X^x + partial_y X^y + partial_z X^z) approx $

$latex approx -frac{1}{3}frac{X^x_{i+1,j,k}-X^x_{i-1,j,k}}{h_x} -frac{1}{3} frac{X^y_{i,j+1,k}-X^y_{i,j-1,k}}{h_y} + frac{2}{3} frac{X^z_{i,j,k+1}-X^z_{i,j,k-1}}{h_z}) = hat{A}^{zz}_{i,j,k}$.

Por tanto, la siguiente ecuación:

$latex Delta psi = -2 pi psi^{-1} (D + tau) – psi^{-7} frac{(hat{A}^{xx})^2+(hat{A}^{yy})^2+(hat{A}^{zz})^2+2(hat{A}^{xy})^2+2(hat{A}^{xz})^2+2(hat{A}^{yz})^2}{8}$

queda:

$latex approx frac{psi_{i-1,j,k}-2psi_{i,j,k}+psi_{i+1,j,k}}{h_x^2} + frac{psi_{i,j-1,k}-2psi_{i,j,k}+psi_{i,j+1,k}}{h_y^2} + frac{psi_{i,j,k-1}-2psi_{i,j,k}+psi_{i,j,k+1}}{h_z^2} = $

$latex =-2 pi psi^{-1}_{i,j,k} (D_{i,j,k}+tau_{i,j,k}) – $

$latex – frac{psi^{-7}_{i,j,k}}{8} ( (hat{A}^{xx}_{i,j,k})^2+(hat{A}^{yy}_{i,j,k})^2+(hat{A}^{zz}_{i,j,k})^2+2(hat{A}^{xy}_{i,j,k})^2+2(hat{A}^{xz}_{i,j,k})^2+2(hat{A}^{yz}_{i,j,k})^2 ) $,

con:

$latex partial_{psi_{i,j,k}} F(psi_{i,j,k}) = -2 ( frac{1}{h_x^2} + frac{1}{h_y^2} + frac{1}{h_z^2} ) -2 pi psi_{i,j,k}^{-2} (D_{i,j,k}+tau_{i,j,k}) – $

$latex – frac{7}{8} psi^{-8}_{i,j,k} ( (hat{A}^{xx}_{i,j,k})^2+(hat{A}^{yy}_{i,j,k})^2+(hat{A}^{zz}_{i,j,k})^2+2(hat{A}^{xy}_{i,j,k})^2+2(hat{A}^{xz}_{i,j,k})^2+2(hat{A}^{yz}_{i,j,k})^2 )$.

y la ecuación:

$latex Delta (alphapsi) = 2 pi (alphapsi)^{-1} ( D + tau + 2 rho h (w^2-1) + 6 p) + $

$latex + frac{7}{8} (alpha psi)^{-7} ((hat{A}^{xx})^2+(hat{A}^{yy})^2+(hat{A}^{zz})^2+2(hat{A}^{xy})^2+2(hat{A}^{xz})^2+2(hat{A}^{yz})^2)$

como:

$latex approx frac{(alphapsi)_{i-1,j,k} – 2(alphapsi)_{i,j,k}+(alphapsi)_{i+1,j,k}}{h_x^2} + frac{(alphapsi)_{i,j-1,k}-2(alphapsi)_{i,j,k}+(alphapsi)_{i,j+1,k}}{h_y^2} + frac{(alphapsi)_{i,j,k-1}-2(alphapsi)_{i,j,k}+(alphapsi)_{i,j,k+1}}{h_z^2} = $

$latex =2 pi (alphapsi)_{i,j,k}^{-1} (D_{i,j,k}+tau_{i,j,k} + 2 rho_{i,j,k} h_{i,j,k} (w^2_{i,j,k}-1)+6p_{i,j,k}) + $

$latex + frac{7}{8}(alphapsi)_{i,j,k}^{-7} ( (hat{A}^{xx}_{i,j,k})^2+(hat{A}^{yy}_{i,j,k})^2+(hat{A}^{zz}_{i,j,k})^2+2(hat{A}^{xy}_{i,j,k})^2+2(hat{A}^{xz}_{i,j,k})^2+2(hat{A}^{yz}_{i,j,k})^2 ) $,

donde:

$latex partial_{psialpha_{i,j,k}} F(psialpha_{i,j,k}) = -2 ( frac{1}{h_x^2} + frac{1}{h_y^2} + frac{1}{h_z^2} ) + $

$latex + 2 pi (psialpha)_{i,j,k}^{-2} (D_{i,j,k}+tau_{i,j,k} + 2 rho_{i,j,k} h_{i,j,k} (w^2_{i,j,k}-1)+6p_{i,j,k}) – $

$latex + frac{49}{8} (psialpha)_{i,j,k}^{-8} ( (hat{A}^{xx}_{i,j,k})^2+(hat{A}^{yy}_{i,j,k})^2+(hat{A}^{zz}_{i,j,k})^2+2(hat{A}^{xy}_{i,j,k})^2+2(hat{A}^{xz}_{i,j,k})^2+2(hat{A}^{yz}_{i,j,k})^2 )$.

Finalmente, tenemos:

$latex Delta beta^x = partial_x (2 alpha psi^{-6} hat{A}^{xx}) + partial_y (2 alpha psi^{-6} hat{A}^{xy}) + partial_z (2 alpha psi^{-6} hat{A}^{xz}) – $

$latex – frac{1}{3} partial_x (partial_x beta^x + partial_y beta^y + partial_z beta^z) approx $

$latex approx frac{beta^x_{i-1,j,k}-2beta^x_{i,j,k}+beta^x_{i+1,j,k}}{h_x^2} + frac{beta^x_{i,j-1,k}-2beta^x_{i,j,k}+beta^x_{i,j+1,k}}{h_y^2} + frac{beta^x_{i,j,k-1}-2beta^x_{i,j,k}+beta^x_{i,j,k+1}}{h_z^2} = $

$latex = frac{(alpha psi)_{i+1,j,k}^{-6} hat{A}_{i+1,j,k}^{xx} – (alpha psi)_{i-1,j,k}^{-6} hat{A}_{i-1,j,k}^{xx}}{h_x} + $

$latex + frac{(alpha psi)_{i,j+1,k}^{-6} hat{A}_{i,j+1,k}^{xy} – (alpha psi)_{i,j-1,k}^{-6} hat{A}_{i,j-1,k}^{xy}}{h_y} + $

$latex + frac{(alpha psi)_{i,j,k+1}^{-6} hat{A}_{i,j,k+1}^{xz} – (alpha psi)_{i,j,k-1}^{-6} hat{A}_{i,j,k-1}^{xz}}{h_z} – $

$latex – frac{1}{3} ( frac{beta^x_{i-1,j,k}-2beta^x_{i,j,k}+beta^x_{i+1,j,k}}{h_x^2} + $

$latex + frac{beta^y_{i-1,j-1,k}-beta^y_{i+1,j-1,k}-beta^y_{i-1,j+1,k}+beta^y_{i+1,j+1,k}}{4 h_x h_y} + $

$latex + frac{beta^z_{i-1,j,k-1}-beta^z_{i+1,j,k-1}-beta^z_{i-1,j,k+1}+beta^z_{i+1,j,k+1}}{4 h_x h_z} $,

con:

$latex partial_{beta^x_{i,j,k}} F(beta^x_{i,j,k}) = -2 ( frac{4}{3}frac{1}{h_x^2} + frac{1}{h_y^2} + frac{1}{h_z^2})$,

$latex Delta beta^y = partial_x (2 alpha psi^{-6} hat{A}^{yx}) + partial_y (2 alpha psi^{-6} hat{A}^{yy}) + partial_z (2 alpha psi^{-6} hat{A}^{yz}) – $

$latex – frac{1}{3} partial_y (partial_x beta^x + partial_y beta^y + partial_z beta^z) approx $

$latex approx frac{beta^y_{i-1,j,k}-2beta^y_{i,j,k}+beta^y_{i+1,j,k}}{h_x^2} + frac{beta^y_{i,j-1,k}-2beta^y_{i,j,k}+beta^y_{i,j+1,k}}{h_y^2} + frac{beta^y_{i,j,k-1}-2beta^y_{i,j,k}+beta^y_{i,j,k+1}}{h_z^2} = $

$latex = frac{(alpha psi)_{i+1,j,k}^{-6} hat{A}_{i+1,j,k}^{yx} – (alpha psi)_{i-1,j,k}^{-6} hat{A}_{i-1,j,k}^{yx}}{h_x} + $

$latex + frac{(alpha psi)_{i,j+1,k}^{-6} hat{A}_{i,j+1,k}^{yy} – (alpha psi)_{i,j-1,k}^{-6} hat{A}_{i,j-1,k}^{yy}}{h_y} + $

$latex + frac{(alpha psi)_{i,j,k+1}^{-6} hat{A}_{i,j,k+1}^{yz} – (alpha psi)_{i,j,k-1}^{-6} hat{A}_{i,j,k-1}^{yz}}{h_z} – $

$latex – frac{1}{3} ( frac{beta^x_{i-1,j-1,k}-beta^x_{i+1,j-1,k}-beta^x_{i-1,j+1,k}+beta^x_{i+1,j+1,k}}{4h_xh_y} +$

$latex + frac{beta^y_{i,j-1,k}-2beta^y_{i,j,k}+beta^y_{i,j+1,k}}{h_y^2} +$

$latex + frac{beta^z_{i-1,j,k-1}-beta^z_{i+1,j,k-1}-beta^z_{i-1,j,k+1}+beta^z_{i+1,j,k+1}}{4h_yh_z} )$,

con:

$latex partial_{beta^y_{i,j,k}} F(beta^y_{i,j,k}) = -2 ( frac{1}{h_x^2} + frac{4}{3} frac{1}{h_y^2} + frac{1}{h_z^2})$,

$latex Delta beta^z = partial_x (2 alpha psi^{-6} hat{A}^{zx}) + partial_y (2 alpha psi^{-6} hat{A}^{zy}) + partial_z (2 alpha psi^{-6} hat{A}^{zz}) – $

$latex – frac{1}{3} partial_z (partial_x beta^x + partial_y beta^y + partial_z beta^z) approx $

$latex approx frac{beta^z_{i-1,j,k}-2beta^z_{i,j,k}+beta^z_{i+1,j,k}}{h_x^2} + frac{beta^z_{i,j-1,k}-2beta^z_{i,j,k}+beta^z_{i,j+1,k}}{h_y^2} + frac{beta^z_{i,j,k-1}-2beta^z_{i,j,k}+beta^z_{i,j,k+1}}{h_z^2} = $

$latex = frac{(alpha psi)_{i+1,j,k}^{-6} hat{A}_{i+1,j,k}^{zx} – (alpha psi)_{i-1,j,k}^{-6} hat{A}_{i-1,j,k}^{zx}}{h_x} + $

$latex + frac{(alpha psi)_{i,j+1,k}^{-6} hat{A}_{i,j+1,k}^{zy} – (alpha psi)_{i,j-1,k}^{-6} hat{A}_{i,j-1,k}^{zy}}{h_y} + $

$latex + frac{(alpha psi)_{i,j,k+1}^{-6} hat{A}_{i,j,k+1}^{zz} – (alpha psi)_{i,j,k-1}^{-6} hat{A}_{i,j,k-1}^{zz}}{h_z} – $

$latex – frac{1}{3} ( frac{beta^x_{i-1,j,k-1}-beta^x_{i+1,j,k-1}-beta^x_{i-1,j,k+1}+beta^x_{i+1,j,k+1}}{4h_xh_z} +$

$latex + frac{beta^y_{i,j-1,k-1}-beta^y_{i,j+1,k-1}-beta^y_{i,j-1,k+1}+beta^y_{i,j+1,k+1}}{4h_yh_z} )$

$latex + frac{beta^z_{i,j,k-1}-2beta^z_{i,j,k}+beta^z_{i,j,k+1}}{h_z^2}$,

con:

$latex partial_{beta^z_{i,j,k}} F(beta^z_{i,j,k}) = -2 ( frac{1}{h_x^2} + frac{1}{h_y^2} + frac{4}{3} frac{1}{h_z^2} )$.

Tags: , , ,

Ya escribimos al respecto en este post. Aquí lo que haremos es reescribir las expresiones allí introducidas

En primer lugar, teniamos:

 $latex Delta X^i = 8 pi f^{ij}S_j^* – frac{1}{3}mathcal{D}^i mathcal{D}_j X^j$

donde:

$latex S_j^* := sqrt{ frac{gamma}{f} } S = psi^6 S_j$,

$latex S_j := rho h w^2 v_j$.

En el caso de estar trabajando en cartesianas y teniendo en cuenta todo el trabajo realizado en el artículo, nos queda:

$latex partial_{xx} X^x + partial_{yy} X^x + partial_{zz} X^x = 8 pi psi^6 rho h w^2 v_x – frac{1}{3} partial_x (partial_x X^x + partial_y X^y + partial_z X^z)$,

$latex partial_{xx} X^y + partial_{yy} X^y + partial_{zz} X^y = 8 pi psi^6 rho h w^2 v_y – frac{1}{3} partial_y (partial_x X^x + partial_y X^y + partial_z X^z)$,

$latex partial_{xx} X^z + partial_{yy} X^z + partial_{zz} X^z = 8 pi psi^6 rho h w^2 v_z – frac{1}{3} partial_z (partial_x X^x + partial_y X^y + partial_z X^z)$.

A continuación, y para la siguiente ecuación, necesitamos:

$latex hat{A}^{ij} = mathcal{D}^i X^j + mathcal{D}^j X^i – frac{2}{3} mathcal{D}_k X^k f^{ij}$

que queda como:

$latex hat{A}^{xx} = 2 partial_x X^x – frac{2}{3} (partial_x X^x + partial_y X^y + partial_z X^z)$,

$latex hat{A}^{xy} = hat{A}^{yx}= partial_x X^y + partial_y X^x$,

$latex hat{A}^{xz} = hat{A}^{zx} = partial_x X^z + partial_z X^x$,

$latex hat{A}^{yy} = 2 partial_y X^y – frac{2}{3} (partial_x X^x + partial_y X^y + partial_z X^z)$,

$latex hat{A}^{yz} = hat{A}^{zy} = partial_y X^z + partial_z X^y$,

$latex hat{A}^{zz} = 2 partial_z X^z – frac{2}{3} (partial_x X^x + partial_y X^y + partial_z X^z)$,

por lo que:

$latex Delta psi = -2 pi psi^{-1} E^* – psi^{-7} frac{f_{il}f_{jm}hat{A}^{lm}hat{A}^{ij}}{8}$

donde:

$latex E^*:= sqrt{ frac{gamma}{f} } E = psi^6 E$,

$latex E:= D + tau$

es:

$latex Delta psi = -2 pi psi^{-1} (D + tau) – psi^{-7} frac{(hat{A}^{xx})^2+(hat{A}^{yy})^2+(hat{A}^{zz})^2+2(hat{A}^{xy})^2+2(hat{A}^{xz})^2+2(hat{A}^{yz})^2}{8}$.

La siguiente:

$latex Delta (alphapsi) = 2 pi (alphapsi)^{-1} (E^* + 2S^*) + frac{7}{8} (alphapsi)^{-7} (f_{il} f{jm} hat{A}^{lm} hat{A}^{ij})$

con:

$latex S^*:= sqrt{ frac{gamma}{f} } S = psi^6 S$,

$latex S:= rho h (w^2-1) + 3 p$

queda:

$latex Delta (alphapsi) = 2 pi (alphapsi)^{-1} ( D + tau + 2 rho h (w^2-1) + 6 p) + $

$latex + frac{7}{8}(alphapsi)^{-7} ((hat{A}^{xx})^2+(hat{A}^{yy})^2+(hat{A}^{zz})^2+2(hat{A}^{xy})^2+2(hat{A}^{xz})^2+2(hat{A}^{yz})^2)$

Y la última:

$latex Delta beta^i = mathcal{D}_j (2 (alphapsi)^{-6} hat{A}^{ij}) – frac{1}{3} mathcal{D}^i (mathcal{D}_j beta^j)$,

que escribimos como:

$latex Delta beta^x = partial_x (2 (alpha psi)^{-6} hat{A}^{xx}) + partial_y (2 (alpha psi)^{-6} hat{A}^{xy}) + partial_z (2 (alpha psi)^{-6} hat{A}^{xz}) – $

$latex – frac{1}{3} partial_x (partial_x beta^x + partial_y beta^y + partial_z beta^z)$

$latex Delta beta^y = partial_x (2 (alpha psi)^{-6} hat{A}^{yx}) + partial_y (2 (alpha psi)^{-6} hat{A}^{yy}) + partial_z (2 (alpha psi)^{-6} hat{A}^{yz}) – $

$latex – frac{1}{3} partial_y (partial_x beta^x + partial_y beta^y + partial_z beta^z)$

$latex Delta beta^z = partial_x (2 (alpha psi)^{-6} hat{A}^{zx}) + partial_y (2 (alpha psi)^{-6} hat{A}^{zy}) + partial_z (2 (alpha psi)^{-6} hat{A}^{zz}) – $

$latex – frac{1}{3} partial_z (partial_x beta^x + partial_y beta^y + partial_z beta^z)$

Tags: , , ,

CoCoNuT es un código que permite realizar simulaciones de colapso estelar. Reescribimos las ecuaciones CFC, que son un caso particular de la aproximación FCF haciendo que las $latex h^{ij}$ sean cero, en terminos de las variables que éste utiliza. Empezamos con una auxilar:

 $latex Delta X^i = 8 pi f^{ij}S_j^* – frac{1}{3}mathcal{D}^i mathcal{D}_j X^j$

donde:

$latex S_j^* := sqrt{ frac{gamma}{f} } S = psi^6 S_j$,

$latex S_j := rho h w^2 v_j$.

La primera es:

$latex Delta psi = -2 pi psi^{-1} E^* – psi^{-7} frac{f_{il}f_{jm}hat{A}^{lm}hat{A}^{ij}}{8}$

donde:

$latex E^*:= sqrt{ frac{gamma}{f} } E = psi^6 E$,

$latex E:= D + tau$

La siguiente:

$latex Delta (psi alpha) = 2 pi alpha (E^* + 2S^*) + alpha psi^{-7} frac{7 f_{il} f{jm} hat{A}^{lm} hat{A}^{ij}}{8}$

con:

$latex S^*:= sqrt{ frac{gamma}{f} } S = psi^6 S$,

$latex S:= rho h (w^2-1) + 3 p$

Y la última:

$latex Delta beta^i = mathcal{D}_j (2 alpha psi^{-6} hat{A}^{ij}) – frac{1}{3} mathcal{D}^i (mathcal{D}_j beta^j)$.

Además, en CFC, tenemos:

$latex hat{A}^{ij} = (LX)^{ij} + hat{A}^{ij}_{TT} approx (LX)^{ij} = mathcal{D}^i X^j + mathcal{D}^j X^i – frac{2}{3} mathcal{D}_k X^k f^{ij}$

donde $latex L$ es el operador de Killing conforme actuando sobre la parte longitudinal $latex X^i$ sin traza y $latex A^{ij}_{TT}$ es la parte transversal sin traza de la curvatura extrínseca , y de FCF tenemos:

  • la métrica inducida en cada hipersuperficie $latex gamma_{mu nu} := g_{mu nu} + n_{mu} n_{nu}$ (o $latex boldsymbol{gamma} := boldsymbol{g} + boldsymbol{n} otimes boldsymbol{n}$ ) con $latex boldsymbol{n} = frac{dt}{|dt|}$.
  • la curvatura extrínseca $latex boldsymbol{K:=-frac{1}{2}mathcal{L}_{boldsymbol{n}} boldsymbol{gamma}}$ (o, con índices, $latex K_{mu nu} = -frac{1}{2} mathcal{L}_{boldsymbol{n}} gamma_{mu nu}$).

Tags: , , ,

FireStats icon Powered by FireStats