derivada covariante

You are currently browsing articles tagged derivada covariante.

En el siguiente vector, calculado mediante una función escrita en Mathematica, tenemos:

$latex (mathcal{D}_r T^r, mathcal{D}_r T^theta, mathcal{D}_r T^varphi, mathcal{D}_theta T^r, mathcal{D}_theta T^theta, mathcal{D}_theta T^varphi, mathcal{D}_varphi T^r, mathcal{D}_varphi T^theta, mathcal{D}_varphi T^varphi)^T=$

derCovEsf

Tags: , , ,

Una conexión afín (o derivación covariante) permite

La derivada covariante del campo vectorial queda:

donde el primer sumando corresponde a la derivada parcial del campo respecto de la base y la segunda a la variación de la propia base curvilínea respecto de las lineas coordenadas.

Aunque la formula anterior corresponde a la derivada covariante de un campo vectorial contravariante, es fácilmente extensible a cualquier tensor $latex (p,q)$. La derivada covariante de un tensor de este tipo queda:

$latex mathcal{D}_{hat{k}} T^{hat{i}_1 cdots hat{i}_p}_{hat{j}_1 cdots hat{j}_q} = e_{hat{k}}^l partial_{hat{k}} T^{hat{i}_1 cdots hat{i}_p}_{hat{j}_1 cdots hat{j}_q} + Sigma_{i=1}^p Gamma_{}^{} T_{}^{hat{j}_1 cdots hat{j}_q} – Sigma_{i=1}^q Gamma_{}^{} T_{hat{i}_1 cdots hat{i}_p}^{}$

donde:

$latex Gamma^{alpha}_{beta gamma} = $

Tags: , , ,

Calculamos ahora los símbolos de Christoffel de la esfera y de la pseudoesfera. La formula general es:

$latex Gamma_{ij}^k = frac{1}{2} g^{rk} { frac{partial}{partial x^j}g_{ir} + frac{partial}{partial x^i}g_{jr} – frac{partial}{partial x^r}g_{ij} }$.

Empezamos con la esfera donde teniamos un embedding:

$latex f: S^2(frac{1}{a^2}) longrightarrow mathbb{R}^3 ,/, (theta,varphi) mapsto a(cos theta cos varphi, cos theta sin varphi, sin theta)$

y la métrica inducida medainte el pullback era:

$latex f^*h: a^2 dtheta^2 + a^2 sin^2 theta dvarphi^2$

Tenemos que calcular:

$latex Gamma^{theta}_{theta theta}, Gamma^{theta}_{theta varphi} = Gamma^{theta}_{varphi theta}, Gamma^{theta}_{varphi varphi}, Gamma^{varphi}_{theta theta}, Gamma^{varphi}_{theta varphi} = Gamma^{varphi}_{varphi theta}, Gamma^{varphi}_{varphi varphi}$

Calculamos, por ejemplo, $latex Gamma^{1}_{22} = Gamma^{theta}_{varphi varphi}$:

$latex Gamma_{varphi varphi}^theta = frac{1}{2} { frac{partial}{partial dvarphi}g_{varphi theta} + frac{partial}{partial varphi}g_{varphi theta} + frac{partial}{partial theta}g_{varphi varphi} } g^{theta theta} + frac{1}{2} { frac{partial}{partial dvarphi}g_{varphi varphi} + frac{partial}{partial varphi}g_{varphi varphi} + frac{partial}{partial varphi}g_{varphi varphi} } g^{varphi theta}$,

que, teniendo en cuenta que las bases son ortogonales, es decir, que métrica es diagonal, queda:

$latex Gamma^{theta}_{varphi varphi} = frac{1}{2} (frac{partial}{partial theta} g_{varphi varphi}) g^{theta theta} = -frac{1}{2 a^2} a^2 , 2 sin theta cos theta = – sin theta cos theta$.

Como son cálculos largos y tediosos donde es muy fácil equivocarse, he escrito una pequeña función en Mathematica que nos los calcula:


 Simbolos[] := For[ia = 1, ia <= 2, ia++,
   For[ib = 1, ib <= 2, ib++,
     For[ic = 1, ic <= 2, ic++,
       r = 0;
       For[ii = 1, ii <= 2, ii++,
         r = r + FullSimplify[
                              1/2*Inverse[g][[ii]][[ia]]*
                              (D[g[[ii]][[ib]],u[[ic]]] + 
                               D[g[[ii]][[ic]],u[[ib]]] - 
                               D[g[[ib]][[ic]], u[[ii]]])
                 ]
       ];
       Print["Gamma[", ia, ",", ib, ",", ic, "] = ", r]
     ]
   ]
 ]
 

Para utilizarla, simplemente inicializamos previamente a su llamada una matriz con nombre $latex g$ de dimensión $latex 2 times 2$ con la métrica (por ejemplo introducimos la de la esfera, las variables sobre las que deriva deben llamarse u_1 y u_2)

$latex g={{a{}^{wedge}2,0},{0,a{}^{wedge}2*text{Sin}[text{u1}]{}^{wedge}2}}$

y, a continuación, llamamos a la función Simbolos sin parámetros:

$latex text{Simbolos}[]$

y obtenemos:

$latex text{Gamma[}1,1,1text{] = }0$

$latex text{Gamma[}1,1,2text{] = }0$

$latex text{Gamma[}1,2,1text{] = }0$

$latex Gamma^{1}_{22} = text{Gamma[}1,2,2text{] = }-text{Cos}[text{u1}] text{Sin}[text{u1}]$

$latex text{Gamma[}2,1,1text{] = }0$

$latex text{Gamma[}2,1,2text{] = }text{Cot}[text{u1}]$

$latex text{Gamma[}2,1,2text{] = }text{Cot}[text{u1}]$

$latex text{Gamma[}2,2,2text{] = }0$

De la misma manera, para la pseudoesfera $latex mathbb{H}^2(-frac{1}{a^2})$ tenemos:

$latex g={{a{}^{wedge}2*text{Cot}[text{u1}]{}^{wedge}2,0},{0,a{}^{wedge}2*text{Sin}[text{u1}]{}^{wedge}2}}$

que nos da, al ejecutar $latex text{Simbolos}[]$,

$latex text{Gamma[}1,1,1text{] = }-text{Csc}[text{u1}] text{Sec}[text{u1}]$

$latex text{Gamma[}1,1,2text{] = }0$

$latex text{Gamma[}1,2,1text{] = }0$

$latex text{Gamma[}1,2,2text{] = }-text{Sin}[text{u1}]^2 text{Tan}[text{u1}]$

$latex text{Gamma[}2,1,1text{] = }0$

$latex text{Gamma[}2,1,2text{] = }text{Cot}[text{u1}]$

$latex text{Gamma[}2,2,1text{] = }text{Cot}[text{u1}]$

$latex text{Gamma[}2,2,2text{] = }0$.

Finalmente, si hacemos todos los cálculos finalmente para $latex mathbb{R}^2$ obtenemos que todos los símbolos de Christoffel son $latex 0$, de manera que, en este caso, y como era de esperar, la derivación parcial y la derivación covariante coinciden.

Conocidos los símbolos de Christoffel, la derivación covariante de cualquier tensor, por ejemplo $latex T^a_b$, queda:

$latex nabla_c T^a_b = partial_c T^a_b + Gamma^a_{dc} T^d_b – Gamma^d_bc T^a_d$,

que corresponde a la parcial a la que sumamos por cada índice covariante del tensor y restamos por cada índice contravariante. En cada caso, lo que se se suma o se resta, proviene del recorrerido sobre el otro índice y el correspondiente del símbolo de Christoffel por el criterio de sumación y fijando el resto.

Tags: , , , , , , , ,

Se pueden pensar las geodésicas de una variedad $latex M$ como curvas $latex gamma$ que minimizan distancias o como curvas de aceleración nulas.

Como la segunda opción, su definición en función de segundas derivadas, resulta mas operativa, y las derivadas direccionales ($latex D_{vec{v}} Y$ , que podemos ver como $latex (nabla Y) cdot vec{v}$, que nos permite definir $latex D_X Y$) no tiene porque estar en el espacio tangente de una variedad arbitraria, necesitamos aprender a derivar campos vectoriales en éstas.

Si la variedad está contenida en un espacio ambiente, siempre podemos quedarnos con la parte tangente de las derivadas direccionales, es decir, siempre podemos proyectar ($latex D_X^T Y$), pero ¿qué pasa cuando no tenemos la variedad embebida en un espacio ambiente? o, equivalentemente, ¿qué pasa cuando queremos trabajar de manera intrínseca? Necesitamos introducir el concepto de conexión.

Una conexión nos permitirá derivar campos vectoriales sobre variedades abstractas y definir así la aceleración de una curva como la variación del campo velocidad a lo largo de ésta. Se puede definir una conexión sobre una variedad $latex M$ como una aplicación:

$latex nabla: mathcal{X}(M) times mathcal{X}(M) longrightarrow mathcal{X}(M)$

cumpliendo:

  1. $latex nabla$ es $latex mathcal{C}^infty (M)$-lineal en la primera variable.
  2. $latex nabla$ es $latex mathbb{R}$-lineal en la segunda variable.
  3. $latex nabla_X (fY) = X(f) Y + f nabla_X Y$ para toda función $latex f$.

Llamamos al nuevo campo vectorial $latex nabla_X Y$ derivada covariante de $latex Y$ con respecto a $latex X$ y $latex nabla_{X_p} Y$ es la derivada direccional de $latex Y$ en la dirección $latex X_p$ sobre la variedad abstracta.

Esta definición es poco operativa. Si expresamos los campos en una carta $latex (U,phi)$, entonces $latex nabla_X Y$ queda totalmente determinado por los símbolos de conexión $latex Gamma_{ij}^k$ determinados mediante:

$latex nabla_{frac{partial}{partial phi^i}} frac{partial}{partial phi^j} = sum_k Gamma_{ij}^k frac{partial}{partial phi^k}$

en las coordenadas de la carta.

Una consideración importante es que las conexiones existen sin la necesidad de las métricas, es decir, que podemos hacer referencia a transporte paralelo y a geodésicas en una variedad sin necesidad de tener definida una métrica sobre ésta. Sin embargo, un resultado sorprendente, fundamental, nos garantiza la construcción de una conexión única coherente con la métrica: la conexión de Levi-Civita.

Tags: , , , ,

Hemos hablado mucho de las ecuaciones de campo de Einstein pero aún no han aparecido de manera explícita. En el artículo “Introducción a la relatividad numérica” de M. Alcubierre, éste habla sobre ellas.

Las ecuaciones de campo de Einstein, derivadas buscando una generalización relativista y consistente de la ley de gravitación de Newton, como lo hizo Einstein, o de manera formal a partir de un principio variacional partiendo de un Lagrangiano adecuado, como lo hizo Hilbert, se escriben en su forma mas compacta como (signatura $latex (-,+,+,+)$ y $latex G=c=1$):

$latex G_{munu} = 8 pi T_{munu}$

donde $latex G_{munu}$ es el tensor de curvatura de Einstein que representa la geometría del espacio-tiempo, $latex 8 pi$ es un factor de normalización para obtener el límite Newtoniano correcto y $latex T_{munu}$ es el tensor de energia-momento que representa la distribución de materia y energía. Como $latex G_{mu nu}, T_{mu nu} in mathcal{M}_{16}(mathbb{R})$, tenemos $latex 16$ ecuaciones que se reducen a $latex 10$ por ser simétricos los dos tensores en sus dos índices. Son $latex 10$ PDEs acopladas en $latex 4D$.

El tensor de Einstein se define como:

$latex G_{mu nu} := R_{mu nu} – frac{1}{2} g_{mu nu}R$

donde $latex R_{mu nu}:=R^lambda_{mu lambda nu}$ es el tensor de Ricci ($latex R_{mu nu} in mathcal{M}_{16}(mathbb{R})$) que se obtiene contrayendo dos índices libres del tensor de curvatura de Riemann y $latex R:=g^{mu nu}R_{mu nu}$ es la traza del tensor de Ricci o la curvatura escalar.

El tensor curvatura está definido para toda variedad dotada de una conexión $latex nabla$:

$latex R(u,v)w = nabla_u nabla_v w – nabla_v nabla_u w – nabla_{[u,v]}w$

y nos permite hablar de transporte paralelo, nos dice el cambio que sufre un vector al transportalo paralelamente. En una variedad de Riemann siempre podemos definir una conexión libre de torsión, la conexión de Levi-Civita, que expresada en componentes queda:

$latex R^{rho}_{sigma mu nu} = partial_mu Gamma^rho_{sigma nu} – partial_nu Gamma^rho_{sigma mu} + Gamma^alpha_{sigma nu} Gamma^rho_{alpha mu} – Gamma^alpha_{sigma mu} Gamma^rho_{alpha nu}$

y que con $latex 4$ índices en $latex n$ dimensiones tiene $latex n^4$ componentes, de las que solo $latex 20$ (si $latex n=4$ y $latex 4^4=256$), al tener en cuenta simetrías, son independientes. Se puede demostrar que $latex R=0 Leftrightarrow$ variedad plana.

Recordar que se pueden subir y bajar índices contrayendo con el tensor métrico o su inverso:

$latex v_alpha = g_{alpha beta} v^beta$

$latex v^alpha = g^{alpha beta} v_beta$

$latex R_{rho sigma mu nu} = g_{rho alpha} R^{alpha}_{sigma mu nu}$

En el último ejemplo obtenemos la versión de la curvatura de Riemann totalmente covariante, un tensor de tipo $latex (0,4)$ (los elementos de la base pasan de ser de la forma $latex frac{partial}{partial_{x^alpha}} otimes dx^beta otimes dx^gamma otimes dx^delta$ de un tensor de tipo $latex (1,3)$ a ser de la forma $latex dx^alpha otimes dx^beta otimes dx^gamma otimes dx^delta$).

El tensor de curvatura de Riemann tiene las siguientes propiedades:

  1. Antisimetrías: $latex R_{alpha beta gamma delta} = – R_{alpha beta delta gamma} = -R_{beta alpha gamma delta}$.
  2. Simetrías: $latex R_{alpha beta gamma delta} = R_{gamma delta alpha beta}$.
  3. Primera identidad de Bianchi: $latex R_{alpha[betagammadelta]} = R_{alphabetagammadelta} + R_{alphagammadeltabeta} + R_{alphadeltabetagamma} = 0$.
  4. Segunda identidad de Bianchi:$latex R_{alphabeta[gammadelta;epsilon]} = R_{alphabetagammadelta;epsilon} + R_{alphabetadeltaepsilon;gamma} + R_{alphabetaepsilongamma;delta} = 0$.

El tensor de energia-momento describe la densidad de energia, la densidad de momento y el flujo de momento de un campo de materia:

$latex T^{00}$ = densidad de energía.

$latex T^{0i} = $ densidad de momento.

$latex T^{ij} = $ flujo de momento $latex i$ a través de la superficie $latex j$.

Las identidades de Bianchi son muy importantes porque nos llevan a:

$latex G^{mu nu},_{;nu} = 0 Rightarrow T^{mu nu},_{;nu} = 0$

que son las cuatro ecuaciones que representan la conservación local de la energía y del momento (la perdida de energía y momento en una región se compensa con el flujo de energía y momento fuera de esa región) donde $latex ;$ indica la derivada covariante.

Tags: , , , , , , , , , , , , ,

FireStats icon Powered by FireStats