FireStats error : FireStats: Unknown commit strategy

ecuaciones Maxwell

You are currently browsing articles tagged ecuaciones Maxwell.

En la Lecture III del curso sobre GR de C. Hirata nos comenta, por una parte, operaciones sobre tensores, y por otra, electrodinámica en relatividad especial.

La primera operación que define es el producto tensorial. Dados dos tensores $latex A$ y $latex B$ de tipo $latex binom{m}{n}$ y $latex binom{p}{q}$ respectivamente, podemos construir un nuevo tensor $latex A otimes B$ de tipo $latex binom{m+p}{n+q}$ haciendo:

$latex (boldsymbol{A} otimes boldsymbol{B})(boldsymbol{tilde{k}},ldots,boldsymbol{u},boldsymbol{tilde{l}},ldots,boldsymbol{v}):=boldsymbol{A}(boldsymbol{tilde{k}}ldotsboldsymbol{u})boldsymbol{B}(boldsymbol{tilde{l}},ldots,boldsymbol{v}) $

que en components queda:

$latex (A otimes B)^{alpha_1 ldots alpha_m,,gamma_1 ldots gamma_p}_{beta_1 ldots beta_n ,, delta_1 ldots delta_q} = A^{ alpha_1 ldots alpha_m}_{beta_1 ldots beta_n} B^{gamma_1 ldots gamma_p}_{delta_1 ldots delta_q}$

Comenta la idea intuitiva que lo que estamos haciendo es la generalización  a tensores de rango arbitrario del hecho de construir la matriz $latex boldsymbol{u}boldsymbol{v^T}$ a partir de los dos vectores (columna, siempre columna los vectores…) $latex boldsymbol{u}$ y $latex boldsymbol{v}$.

Ya comentamos que:

$latex boldsymbol{d}f(boldsymbol{v}) = frac{d}{dt}(boldsymbol{x}(t) circ f)|_{t=0}$.

Podemos generalizarlo para un tensor $latex boldsymbol{T}$ de rango cualquiera. Por ejemplo, con rango $latex binom{1}{1}$ tendriamos $latex T^{alpha}_{beta}$ y:

$latex (boldsymbol{nabla T}$

Contracción de un tensor

Transposición de un tensor

Simetrización y antisimetrización de un tensor

Producto exterior

Tensor de volumen

Derivada exterior

Con respecto a la parte de electrodinámica, empezamos con la fuerza de Lorentz clásica, que es la fuerza que experiementa una particula de masa $latex m$ y carga $latex e$ sometida a un cambo electromagnético:

$latex m frac{d}{dt} boldsymbol{v} = e( boldsymbol{E} + boldsymbol{v} times boldsymbol{B} )$.

Para su generalización en SR necesitamos, por una parte, que la ecuación sea invariante Lorentz, y por otra, pensar como se generaliza el producto vectorial. La opción mas simple y que funciona es, pensando en $latex 4$-aceleraciones, el campo electromagnético y las $latex 4$-velocidades, la siguiente:

$latex frac{d}{dtau}p^{alpha} = m^{alpha} = e F^{alpha}_{beta} u^{beta}$

Tenemos ahora $latex 16$ ecuaciones mientras que, hasta ahora, teniamos $latex 6$: $latex 3$ para el campo eléctrico y $latex 3$ para el campo magnético.

Ecuaciones de Maxwell

Tags: , , , , , , , , , ,

Para un observador inicial, si denotamos con $latex vec{E}$ al campo eléctrico, $latex vec{B}$ al campo magnético, $latex rho$ a la densidad de carga y $latex vec{J}$ a la densidad de corriente, entonces tenemos las ecuaciones de Maxwell:

$latex nabla cdot vec{E} = rho$

$latex nabla times vec{E} + vec{B}_t = 0$

$latex nabla cdot vec{B} = 0$

$latex nabla times vec{B} – vec{E}_t = vec{J}$

y la ecuación de continuidad o de conservación de carga:

$latex rho_t + nabla cdot vec{J} = 0$

Si el observador inercial se encuentra en el espacio-tiempo de Minkowski, las ecuaciones de Maxwell se expresan como dos ecuaciones de ligadura:

$latex nabla cdot vec{E} = rho$

$latex nabla cdot vec{B} = 0$

y seis ecuaciones de evolución:

$latex vec{E}_t = nabla times vec{B} – vec{J}$

$latex vec{B}_t = -nabla times vec{E}$

Si en un instante $latex t=t_0$ se cumplen las ecuaciones de ligadura y si la carga eléctrica se conserva en un entorno de $latex t=t_0$,

$latex rho_t + nabla cdot vec{J} = 0$,

entonces las ecuaciones de ligadura se cumplen en ese entorno (como consecuencia de las ecuaciones de evolución).

Tags: ,

FireStats icon Powered by FireStats