FireStats error : FireStats: Unknown commit strategy

PDEs elípticas vectoriales

You are currently browsing articles tagged PDEs elípticas vectoriales.

Aquí está el artículo donde aparece el nuevo esquema en el que el sistema se desacopla de manera jerárquica:

(1) Conocidas las cantidades hidrodinámicas conservadas, resolver:

$latex Delta X^i + frac{1}{3} mathcal{D}^i mathcal{D}_j X^j = 8 pi f^{ij} S_j^*$

para encontrar

$latex hat{A}^{ij} approx (LX)^{ij} = mathcal{D}^i X^j + mathcal{D}^j X^i – frac{2}{3} mathcal{D}_k X^k f^{ij}$.

(2) Resolver la ecuación:

$latex Delta psi = -2 pi psi^{-1} E^{*} – psi^{-7} frac{ f_{il} f_{jm} hat{A}^{lm} hat{A}^{ij} }{8}$

para encontrar $latex psi$, donde la unicidad local ahora esta garantizada. Podemos calcular $latex S^*$ de manear consistente.

(3) Resolver la ecuación:

$latex Delta(psi N) = 2 pi N psi^{-1} (E^* + 2 S^*) + N psi^{-7} frac{7 f_{il} f_{jm} hat{A}^{lm} hat{A}^{ij} }{8}$

para $latex N psi$, una ecuación lineal donde podemos aplicar el principio del máximo con lo que, con las codiciones de contorno apropiadas, se sigue la unicidad y existencia.

(4) Finalmente, resolver:

$latex Delta beta^i + frac{1}{3} mathcal{D}^i ( mathcal{D}_j beta^j ) = D_j( 2 N psi^{-6} hat{A}^{ij} )$

para encontrar $latex beta^i$.

Además, en este otro artículo, presentan una manera de reducir una ecuación elíptica vectorial, un complicado sistema acoplado de PDEs, a un conjunto de ecuaciones Poisson escalares desacopladas. Para el caso del shift, la $latex beta$ anterior, por ejemplo, en coordenadas esféricas, tendríamos:

(1) Resolver ecuación:

$latex Delta mu = mu_S$

que corresponde a la parte toroidal, para la resolución de la parte angular se introducen un potencial poloidal $latex eta$ y  un potencial toroidal $latex mu$ de manera que $latex boldsymbol{beta} = $, y está desacoplada del resto para obtener $latex mu$.

(2) Resolver la también desacoplada ecuación para la divergencia (de $latex boldsymbol{beta}$ respecto de la conexión plana $latex mathcal{D}$):

$latex Delta Theta = frac{3}{4} mathcal{D}_{hat{k}} S(boldsymbol{beta}^{hat{k}})$.

(3) Obtener $latex beta^r$ a partir de una de las siguiente ecuaciones:

(i) $latex frac{partial^2 beta^r}{partial r^2} + frac{4}{r} frac{partial beta^r}{partial r} + frac{2 beta^r}{r^2} + frac{1}{r^2}Delta_{theta varphi} beta^r = S(boldsymbol{beta})^r – frac{1}{3} frac{partial Theta}{partial r} + frac{2}{r} Theta$

(ii) $latex Delta chi = r S(boldsymbol{beta})^r – frac{r}{3} frac{partial Theta}{partial r} + 2 Theta $, donde $latex chi = r beta^r$

(4) Deducir $latex eta$ de una de las siguientes ecuaciones:

(i) $latex Delta_{theta varphi} eta = r Theta – r frac{partial beta^r}{delta r} – 2 beta^r$, que tiene la ventaja de que solo requiere una división por $latex -l (l+1)$ de los coeficientes de la expansión por armónicos esféricos pero la desventaja de que utiliza la derivada radial de $latex beta^r$ que puede tener problemas con el orden.

(ii) $latex Delta eta = eta_S – frac{2 beta^r}{r^2} – frac{1}{3} frac{Theta}{r}$, que requiere la resolución de otra ecuación de Poisson adicional.

Tags: , , , , ,

FireStats icon Powered by FireStats