FireStats error : FireStats: Unknown commit strategy

producto tensorial

You are currently browsing articles tagged producto tensorial.

En la Lecture III del curso sobre GR de C. Hirata nos comenta, por una parte, operaciones sobre tensores, y por otra, electrodinámica en relatividad especial.

La primera operación que define es el producto tensorial. Dados dos tensores $latex A$ y $latex B$ de tipo $latex binom{m}{n}$ y $latex binom{p}{q}$ respectivamente, podemos construir un nuevo tensor $latex A otimes B$ de tipo $latex binom{m+p}{n+q}$ haciendo:

$latex (boldsymbol{A} otimes boldsymbol{B})(boldsymbol{tilde{k}},ldots,boldsymbol{u},boldsymbol{tilde{l}},ldots,boldsymbol{v}):=boldsymbol{A}(boldsymbol{tilde{k}}ldotsboldsymbol{u})boldsymbol{B}(boldsymbol{tilde{l}},ldots,boldsymbol{v}) $

que en components queda:

$latex (A otimes B)^{alpha_1 ldots alpha_m,,gamma_1 ldots gamma_p}_{beta_1 ldots beta_n ,, delta_1 ldots delta_q} = A^{ alpha_1 ldots alpha_m}_{beta_1 ldots beta_n} B^{gamma_1 ldots gamma_p}_{delta_1 ldots delta_q}$

Comenta la idea intuitiva que lo que estamos haciendo es la generalización  a tensores de rango arbitrario del hecho de construir la matriz $latex boldsymbol{u}boldsymbol{v^T}$ a partir de los dos vectores (columna, siempre columna los vectores…) $latex boldsymbol{u}$ y $latex boldsymbol{v}$.

Ya comentamos que:

$latex boldsymbol{d}f(boldsymbol{v}) = frac{d}{dt}(boldsymbol{x}(t) circ f)|_{t=0}$.

Podemos generalizarlo para un tensor $latex boldsymbol{T}$ de rango cualquiera. Por ejemplo, con rango $latex binom{1}{1}$ tendriamos $latex T^{alpha}_{beta}$ y:

$latex (boldsymbol{nabla T}$

Contracción de un tensor

Transposición de un tensor

Simetrización y antisimetrización de un tensor

Producto exterior

Tensor de volumen

Derivada exterior

Con respecto a la parte de electrodinámica, empezamos con la fuerza de Lorentz clásica, que es la fuerza que experiementa una particula de masa $latex m$ y carga $latex e$ sometida a un cambo electromagnético:

$latex m frac{d}{dt} boldsymbol{v} = e( boldsymbol{E} + boldsymbol{v} times boldsymbol{B} )$.

Para su generalización en SR necesitamos, por una parte, que la ecuación sea invariante Lorentz, y por otra, pensar como se generaliza el producto vectorial. La opción mas simple y que funciona es, pensando en $latex 4$-aceleraciones, el campo electromagnético y las $latex 4$-velocidades, la siguiente:

$latex frac{d}{dtau}p^{alpha} = m^{alpha} = e F^{alpha}_{beta} u^{beta}$

Tenemos ahora $latex 16$ ecuaciones mientras que, hasta ahora, teniamos $latex 6$: $latex 3$ para el campo eléctrico y $latex 3$ para el campo magnético.

Ecuaciones de Maxwell

Tags: , , , , , , , , , ,

Ya hemos comentado que podemos ver un campo tensorial diferenciable como una generalización de funciones, campos vectoriales y $latex 1$-formas. Estudiaremos ahora el caso de las métricas.

Como comentamos en un post anterior, una métrica de Riemann:

$latex g_m: T_mM times T_mM longrightarrow mathbb{R}$

podemos verla como un campo tensorial dos veces covariante, de tipo $latex (0,2)$. Efectivamente, ya que en cada $latex m in M$ tenemos definido:

$latex g_m in mathcal{L}(T_mM times T_mM, mathbb{R}) cong otimes^2 T_m^*M = T_m^{(0,2)}M$.

Por lo tanto, tenemos que $latex g: M longrightarrow T^{(0,2)}M$ define una métrica sobre la variedad $latex M$.

Por ejemplo, la métrica de Schwarzschild en coordenadas de Schwarzschild $latex (r,theta,varphi,tau)$ es:

$latex ds^2 = frac{1}{1-frac{2M}{r}}dr^2+ r^2 (dtheta^2 + sin^2 theta dvarphi^2)-(1-frac{2M}{r})dtau^2$

que en notación de productos tensoriales queda:

$latex g = frac{1}{1-frac{2M}{r}}dr otimes dr + r^2 (dtheta otimes dtheta + sin^2 theta dvarphi otimes dvarphi)-(1-frac{2M}{r})dtau otimes dtau$

Acabamos de ver que $latex g_m in mathcal{L}(T_mM times T_mM, mathbb{R})$. En nuestro caso, una base de $latex T_mM$ es:

$latex { frac{partial}{partial r}|_m, frac{partial}{partial theta}|_m, frac{partial}{partial varphi}|_m, frac{partial}{partial tau}|_m}$

por lo que $latex dim T_mM = 4$ y su base dual:

$latex { dr_m, dtheta_m, dvarphi_m, dtau_m }$

es una base de $latex T_m^*M$ con $latex dim T_m^*M = 4$. Como:

$latex mathcal{L}(T_mM times T_mM, mathbb{R}) cong otimes^2 T_m^*M = T_m^{(0,2)}M$

tenemos que:

$latex dim T_m^*M otimes T_m^*M = dim T_m^*M cdot dim T_m^*M = 4 cdot 4 = 16$

y una base de $latex T_m^*M otimes T_m^*M$ es:

$latex { dr_m otimes dr_m, dr_m otimes dtheta_m, dr_m otimes dvarphi_m, dr_m otimes dtau_m,$

$latex dtheta_m otimes dr_m, dtheta_m otimes dtheta_m, dtheta_m otimes dvarphi_m, dtheta_m otimes dtau_m,$

$latex dvarphi_m otimes dr_m, dvarphi_m otimes dtheta_m, dvarphi_m otimes dvarphi_m, dvarphi_m otimes dtau_m,$

$latex dtau_m otimes dr_m, dtau_m otimes dtheta_m, dtau_m otimes dvarphi_m, dtau_m otimes dtau_m }$

Las componentes de nuestra métrica en esta base son:

$latex g_{11} = frac{1}{1-frac{2M}{r}}$, $latex g_{22} = r^2$, $latex g_{33} = r^2 sin^2 theta$, $latex g_{44} = -(1-frac{2M}{r})$ y $latex g_{ij} = 0$ si $latex i neq j$.

En general, dada una variedad $latex M$ de dimensión $latex dim M = n$ y un punto $latex m in M$, entonces $latex dim T_mM = dim T_m^*M = n$ y $latex dim T_m^*M otimes T_m^*M = n^2$, por lo que $latex g_m in mathcal{M}_n(mathbb{R})$.

Si llamamos $latex x^1$ a la coordenada $latex r$, $latex x^2$ a la coordenada $latex theta$, $latex x^3$ a la coordenada $latex varphi$ y $latex x^4$ a la coordenada $latex tau$, entonces podemos referirnos a la métrica $latex g$ de una forma mas compacta:

$latex g = sum_{alpha,beta=1}^4 g_{alphabeta}dx^alpha otimes dx^beta$

que en física y siguiendo el convenio de suma de Einstein, con índices griegos variando de $latex 1$ a $latex 4$ y indices latinos haciendolo entre $latex 1$ y $latex 3$, queda:

$latex g_{alpha beta}dx^alpha dx^beta$

Si calculamos la inversa de la matriz $latex g_{alpha gamma}g^{gamma beta} = delta_alpha^beta$ obtenemos las componentes contravariantes de la métrica:

$latex g = sum_{alpha,beta=1}^4 g^{alpha beta} frac{partial}{partial x^alpha} otimes frac{partial}{partial x^beta} equiv g^{alpha beta} frac{partial}{partial x^alpha} frac{partial}{partial beta}$

que en el caso que nos ocupa son:

$latex g^{11} = 1-frac{2M}{r} $, $latex g^{22}= frac{1}{r^2}$, $latex g^{33}=frac{csc theta}{r^2}$ y $latex g^{44}=-frac{1}{1-frac{2M}{r}}$

por lo que nos queda:

$latex g= 1-frac{2M}{r} frac{partial}{partial r} otimes frac{partial}{partial r} + frac{1}{r^2}frac{partial}{partial theta} otimes frac{partial}{partial theta} + frac{csc theta}{r^2}frac{partial}{partial varphi} otimes frac{partial}{partial varphi} -frac{1}{1-frac{2M}{r}}frac{partial}{partial tau} otimes frac{partial}{partial tau}$

que también puede escribirse:

$latex g= 1-frac{2M}{r} partial_r^2 + frac{1}{r^2} partial_theta^2 + frac{csc theta}{r^2} partial_varphi^2 -frac{1}{1-frac{2M}{r}} partial_tau^2$

Tags: , , , , , , ,

Sean $latex V_1, cdots, V_r$ espacios vectoriales de dimensión finita sobre $latex mathbb{R}$ y sean $latex V_1^*, cdots, V_r^*$ sus espacios duales.

Definimos el producto tensorial como el espacio vectorial de aplicaciones multilineales de $latex V_1^* times ldots times V_r^*$ en $latex mathbb{R}$, es decir:

$latex V_1 otimes ldots otimes V_r := mathcal{L}(V_1^* times ldots times V_r^*, mathbb{R})$

Si $latex v_1 in V_1, ldots , v_r in V_r$ y $latex sigma_1 in V_1^*, ldots, sigma_r in V_r^*$, entonces definimos $latex v_1 otimes , ldots , otimes v_r in V_1 otimes , ldots , otimes V_r$ como:

$latex v_1 otimes ldots otimes v_r (sigma_1, ldots, sigma_r)= sigma_1(v_1) ldots sigma_r(v_r)$

Si $latex dim V_j = n_j$ y sea $latex { e_i^j}_{i=1}^{n_j}$ una base de $latex V_j$ con $latex j=1,ldots,r$, entonces:

$latex {e_{i_1}^1 otimes ldots otimes e_{i_r}^r }_{1 leq i_j leq n_j, 1 leq j leq r }$

es una base de $latex V_1 otimes ldots otimes V_r$, de manera que $latex dim V_1 otimes ldots otimes V_r = n_1ldots n_r$.

Sea $latex V$ un espacio vectorial de dimensión $latex dim V = n$ y $latex V^*$ su dual. Construimos el espacio vectorial

$latex V^{(r,s)}:=(otimes^r V) otimes (otimes^s V^*)$

donde $latex otimes^k E:= E otimes overset{k)}{ldots} otimes E$ es la $latex k$-ésima potencia tensorial de $latex E$. A los elementos de $latex V^{(r,s)}$ se les llama tensores $latex r$ veces contravariantes y $latex s$ veces covariantes sobre $latex V$. Si $latex { e_1, ldots, e_n}$ es una base de $latex V$ y $latex { e^1, ldots, e^n}$ su base dual (los elementos $latex e^i$ son $latex 1$-formes: $latex e^i: V longrightarrow mathbb{R} in V^*$), entonces todo elemento de $latex V^{(r,s)}$ lo podemos escribir como:

$latex t = t^{i_1,ldots, i_r}_{j_1,ldots, j_s}e_{i_1} otimes ldots otimes e_{i_r} otimes e^{j_1} otimes ldots otimes e^{j_s}$

No es dificil demostrar $latex mathcal{L}(V,V) cong V otimes V^*$, $latex mathcal{L}(V times V, mathbb{R}) cong V^* otimes V^*$ y, en general:

$latex mathcal{L}(V times overset{k)}{ldots} times V, V) cong V otimes (otimes^k V^*)$.

Sea $latex M$ una variedad diferenciable y $latex m in M$. Entonces:

$latex T_m^{(r,s)} = (otimes^r T_mM) otimes (otimes^s T_m^*M)$

es un tensor $latex r$ veces contravariante y $latex s$ veces covariante de $latex M$ en $latex m$ y

$latex T^{(r,s)}M = bigsqcup_{m in M} T_m^{(r,s)}M$

es la variedad de tensores de tipo $latex (r,s)$ de $latex M$. Denotamos por $latex pi : T^{(r,s)}M longrightarrow M$ a la proyección que a cada tensor en $latex m$ le hace corresponder el punto $latex m$.

Un campo tensorial $latex r$ veces contravariante y $latex s$ veces covariante en $latex M$, de tipo $latex (r,s)$, es una aplicación diferenciable $latex K : M longrightarrow T^{(r,s)}M$ tal que $latex pi circ K = id$, es decir, que para cada $latex min M$ tenemos que $latex K_m := K(m) in T_m^{(r,s)}M$ (tenemos un campo tensorial definido en cada punto de la variedad).

Si $latex (U, varphi)$ es una carta, entonces:

$latex K|_U = K^{i_1,ldots,i_r}_{j_1,ldots,j_s} frac{partial}{partial varphi^{i_1}} ldots otimes frac{partial}{partial varphi^{i_r}} otimes dvarphi^{j_1} otimes ldots otimes dvarphi^{j_s}$

Los campos tensoriales son una generalización de:

  1. funciones: una función diferenciable $latex h:M longrightarrow mathbb{R}$ determina un campo tensorial de tipo $latex (0,0)$.
  2. campos vectoriales: un campo vectorial $latex X: M longrightarrow TM$ es un campo tensorial de tipo $latex (1,0)$, pues $latex TM = T^{(1,0)}$.
  3. $latex 1$-formas: una $latex 1$-forma $latex w: M longrightarrow T^*M$ es un campo tensorial de tipo $latex (0,1)$, ya que $latex T^*M = T^{(0,1)}$.

Tags: , ,

FireStats icon Powered by FireStats