relatividad general

You are currently browsing articles tagged relatividad general.

En su Lecture I nos habla de vectores, $latex 1$-formas, tensores y espacio-tiempos planos. Para empezar, un vector, a diferencia de un escalar, no solo tiene magnitud sino tambien dirección y sentido. En un contexto mas abstracto, son los elementos de un espacio vectorial fínito $latex V$ (en realidad, un espacio euclideo, es decir, un espacio vectorial normado con una norma procedente de un producto escalar).

Por ejemplo, dada una curva $latex alpha(t) in mathbb{R}^3$, siendo $latex t$ un parámetro, el tiempo absoluto Newtoniano, podemos definir su vector velocidad como:

$latex boldsymbol{v} = boldsymbol{v}(t) = frac{d}{dt} alpha(t) = frac{d}{dt}alpha (= alpha_t)$.

O, en relatividad, $latex beta(tau) in mathbb{M}^4$, con $latex tau$ el tiempo propio:

$latex boldsymbol{v} = boldsymbol{v}(tau) = frac{d}{dtau} beta(tau) = frac{d}{dtau}beta (= beta_tau)$.

Al introducir los espacio vectoriales, podemos sumar/restar vectores entre si, multiplicarlos por un escalar y disponemos de los conceptos de bases (conjuntos de vectores linealmente independientes que forman un sistema generador)  y coordenadas. Sean $latex {boldsymbol{e}_1, boldsymbol{e}_2, boldsymbol{e}_3}$ y $latex { boldsymbol{e}_0, boldsymbol{e}_1, boldsymbol{e}_2, boldsymbol{e}_3}$ las bases de $latex mathbb{R}^3$ y $latex mathbb{M}^4$ respectivamente. Entonces podemos escribir, por ejemplo:

$latex boldsymbol{v} = v^0 boldsymbol{e}_0 + v^1 boldsymbol{e}_1 + v^2 boldsymbol{e}_2 + v^3 boldsymbol{e}_3 = sum_alpha v^alpha boldsymbol{e}_alpha = v^alpha boldsymbol{e}_alpha = v^0 boldsymbol{e}_0 + v^i boldsymbol{e}_i$.

Aunque muchas veces no se escriba explicitamente, tener en cuenta que las coordenadas pueden ser, como en el ejemplo anterior, funciones:

$latex v(tau) = v^alpha (tau) boldsymbol{e}_alpha$.

Para cambiar de un sistema de coordenadas $latex { boldsymbol{e}_alpha }$ a otro $latex { boldsymbol{e}_{tilde{alpha}} }$ basta expresar los vectores de una base  en la otra:

$latex boldsymbol{e}_{tilde{alpha}} = sum_alpha A^alpha_{tilde{alpha}} boldsymbol{e}_{alpha} = A^alpha_{tilde{alpha}} boldsymbol{e}_{alpha}$,

$latex boldsymbol{e}_{alpha} = sum_{tilde{alpha}} B_alpha^{tilde{alpha}} boldsymbol{e}_{tilde{alpha}} = B_alpha^{tilde{alpha}} boldsymbol{e}_{tilde{alpha}}$,

donde $latex B_alpha^{tilde{alpha}} = (A^{-1})_alpha^{tilde{alpha}}$, de manera que si $latex boldsymbol{v} = v^{alpha} boldsymbol{e}_alpha$ entonces:

$latex boldsymbol{v} = v^alpha boldsymbol{e}_alpha = v^alpha B^{tilde{alpha}}_{alpha} boldsymbol{e}_{tilde{alpha}} = v^alpha (A^{-1})^{tilde{alpha}}_{alpha} boldsymbol{e}_{tilde{alpha}} = v^{tilde{alpha}} boldsymbol{e}_{tilde{alpha}}$

con:

$latex v^{tilde{alpha}} = v^{alpha}(A^{-1})^{tilde{alpha}}_{alpha} = (A^{-1})^{tilde{alpha}}_{alpha} v^{alpha}$.

Como ya hemos comentado, disponemos de un producto escalar $latex cdot$ y podemos definir una norma

$latex |boldsymbol{u}|^2 = boldsymbol{u} cdot boldsymbol{u}$.

Volviendo a la idea de que tenemos una base $latex { e_{alpha}}$, entonces basta determinar el comportamiento del producto escalar respecto de los elementos de la base:

$latex boldsymbol{u} cdot boldsymbol{v} = u^{alpha} boldsymbol{e}_{alpha} cdot v^{beta} boldsymbol{e}_{beta} = $

$latex bigg( = sum_{alpha} u^{alpha} boldsymbol{e}_{alpha} cdot sum_{beta} v^{beta} boldsymbol{e}_{beta} = sum_{alpha} sum_{beta} u^{alpha} boldsymbol{e}_{alpha} cdot v^{beta} boldsymbol{e}_{beta} = $

$latex = sum_{alpha} sum_{beta} u^{alpha} v^{beta} (boldsymbol{e}_{alpha} cdot boldsymbol{e}_{beta} ) = sum_{alpha} sum_{beta} (boldsymbol{e}_{alpha} cdot boldsymbol{e}_{beta} ) u^{alpha} v^{beta} = bigg)$

$latex = g_{alpha beta} u^{alpha} v^{beta}$

La conmutatividad del producto escalar nos lleva a que $latex g_{alpha beta} = g_{beta alpha}$ y un cambio de coordenadas de $latex g_{alpha beta}$ a nuevas coordenadas tilde queda:

$latex g_{tilde{alpha} tilde{beta}} = boldsymbol{e}_{tilde{alpha}} cdot boldsymbol{e}_{tilde{beta}} = A^{alpha}_{tilde{alpha}} boldsymbol{e}_{alpha} cdot A^{beta}_{tilde{beta}} boldsymbol{e}_b = A^{alpha}_{tilde{alpha}} A^{beta}_{tilde{beta}} boldsymbol{e}_{alpha} cdot boldsymbol{e}_{beta} = A^{alpha}_{tilde{alpha}} A^{beta}_{tilde{beta}} g_{alpha beta}$

Podemos definir el producto escalar como:

$latex g(u,v) := u cdot v$

que es una $latex 2$-forma, $latex g:T_pM times T_pM longrightarrow mathbb{K}$ , o un tensor dos veces covariante, ya hablaremos.

En el caso particular de $latex mathbb{R}^3$  tenemos:

$latex g_{i j} = delta_{i j} := left(
begin{array}{ccc}
1 & 0 & 0 \
0 & 1 & 0 \
0 & 0 & 1
end{array}
right)$

donde, si tenemos $latex boldsymbol{u} = boldsymbol{u}^i = (u^1, u^2, u^3)^T$ en la base $latex { boldsymbol{e}_i}$:

$latex |boldsymbol{u}|^2 = boldsymbol{u} cdot boldsymbol{u} = delta(boldsymbol{u},boldsymbol{u}) = delta_{ij} u^i u^j = (sum_i sum_j delta_{ij} u^i u^j) = u_j u^j = $

$latex = (u^1)^2 + (u^2)^2 + (u^3)^2$.

que es siempre positiva para todos los vectores salvo para el $latex boldsymbol{0}$. Nos ha aparecido en el cálculo, al multiplicar la matriz de la métrica por el primer vector, el mismo vector pero ahora como $latex 1$-forma: $latex u_i = (u^1, u^2, u^3)$, en la base $latex {boldsymbol{e}^i}$. Además, hemos visto como la métrica nos a permitido bajar un índice. Ya volveremos sobre esto.

y en $latex mathbb{M}^4$:

$latex g_{alpha beta} = eta_{alpha beta} := left(
begin{array}{cccc}
-1 & 0 & 0 & 0 \
0 & 1 & 0 & 0 \
0 & 0 & 1 & 0 \
0 & 0 & 0 & 1
end{array}
right)$.

En este caso, $latex eta_{alpha beta} u^alpha u^{beta} = -(u^0)^2 + (u^1)^2 + (u^2)^2 + (u^3)^2$, dado lugar a tres clases de vectores en función del valor de su norma: espaciales, con norma positiva, temporales, con norma negativa y luminosos, con norma $latex 0$.

Para terminar, nos habla de las $latex 1-$formas, que nos son mas que operadores lineales $latex tilde{boldsymbol{k}}$ que a partir de un vector $latex boldsymbol{v}$ nos devuelve un escalar $latex phi$:

$latex phi = langle tilde{boldsymbol{k}}, boldsymbol{v} rangle$.

Desde el punto de vista del espacio vectorial $latex V$, las $latex 1$-formas son elementos del espacio dual $latex V^*$ (elementos del tipo $latex boldsymbol{tilde{k}}: V longrightarrow mathbb{K}$). Si volvemos a mirar componentes, la acción de la $latex 1$-forma queda totalmente determinada, debido a la linealidad, por su acción sobre los elementos de la base $latex { boldsymbol{e}_alpha}$:

$latex tilde{k_{alpha}} = langle boldsymbol{tilde{k}}, boldsymbol{e}_{alpha} rangle$

de manera que si $latex boldsymbol{v} = v^{alpha} boldsymbol{e}_{alpha}$ tenemos:

$latex langle boldsymbol{tilde{k}}, boldsymbol{v} rangle = langle boldsymbol{tilde{k}}, v^{alpha}boldsymbol{e}_{alpha} rangle = langle boldsymbol{tilde{k}}, boldsymbol{e}_{alpha} rangle v^{alpha} = tilde{k_{alpha}}v^{alpha}$.

Por tanto,

Como tenemos una métrica, podemos relacionar cualquier vector $latex boldsymbol{k}$ con una $latex 1$-forma $latex boldsymbol{tilde{k}}$ de manera que:

$latex langle boldsymbol{tilde{k}}, boldsymbol{v} rangle = boldsymbol{k} cdot boldsymbol{v}$

es decir, que dado $latex boldsymbol{k} in V$ entonces le asociamos $latex boldsymbol{tilde{k}} in V^*$:

$latex boldsymbol{tilde{k}}: V longrightarrow mathbb{K} ,/, v mapsto boldsymbol{tilde{k}}(v) = langle boldsymbol{tilde{k}}, boldsymbol{v} rangle = boldsymbol{k} cdot boldsymbol{v}$

¿Y cuales son sus componentes $latex tilde{k}_{alpha}$? Sencillamente:

$latex tilde{k}_{alpha} = langle boldsymbol{tilde{k}}, boldsymbol{e}_{alpha} rangle = boldsymbol{k} cdot boldsymbol{e}_{alpha} = k^{beta} boldsymbol{e}_{beta} cdot boldsymbol{e}_{alpha} = g_{alpha beta} k^{beta}$.

De la misma manera:

$latex k^{alpha} = g^{alpha beta} tilde{k}_{beta}$, donde $latex g^{alpha beta}$ es la inversa de $latex g_{alpha beta}$ ($latex g^{alpha beta}g_{beta gamma} = delta^{alpha}_{gamma}$).

Finalmente, se puede demostrar que $latex g^{alpha beta} tilde{k}_{alpha} tilde{l}_{beta} = boldsymbol{k} cdot boldsymbol{l}$.

Tags: , , , , , , , ,

Acabo de “tropezarme” por primera vez con Christopher Hirata. La verdad, no lo conocía. Me han sorprendido muchisimo algunas similitudes entre su vida y la de Terry Tao cambiando, obviamene, las matemáticas por la física.

Hirata nace en 1982, Tao en 1975. Hirata gana una medalla de oro en la IPhO en 1996 a los 13 años y Tao gana la de oro en la IMO del 1988 también con los mismos años. Hirata entra en el Calthec a los 14 y recibe un PhD en física a los 22 en Princeton mientras que Tao entra con 14 en Flinders y recibe un PhD en matemáticas a los 20 años también en Princeton. Sorprendente… (Para los que crean en el IQ, yo tengo mis reservas sobre estos índices de inteligencia, dicen que Hirata tiene 225 y Tao 230).

Al margen de curiosidades, vamos a ir comentando a lo largo de unos cuantos posts  su curso sobre relatividad general (GR: General Relativity). Comentaremos lo allí expuesto y lo intentaremos completar desde un punto de vista de la geometría diferencial y Riemanniana.

Tags: , ,

Cuando exigimos que las funciones de transición del atlas que recubre una variedad diferenciable sean holomorfas podemos decir que tenemos una variedad compleja. En particular, toda variedad compleja de dimensión $latex n$ será una variedad diferenciable de dimensión $latex 2n$ dotada de una orientación natural. Las superfícies de Riemann, o los grupos de Lie con operaciones de grupo holomorfas son ejemplos de variedades complejas.

Las variedades lorentzianas son importantes en relatividad general. La mecánica cuántica tiene su base matemática en los espacios de Hilbert complejos separables ($latex L^2(mathbb{R})$ o $latex mathbb{C}^{2n+1}$).

Existen diferentes maneras de definir el cuerpo de los números complejos. La mas intuitiva es hacer tomar el conjunto $latex mathbb{R} times mathbb{R}$ y definir las operaciones internas:

  • $latex (x_1,y_1) + (x_2,y_2) = (x_1+x_2,y_1+y_2)$ .
  • $latex (x_1,y_1) cdot (x_2,y_2) = (x_1 x_2 – y_1 y_2, x_1 y_2 + x_2 y_1)$.

con $latex (x_1,y_1), (x_2, y_2) in mathbb{R} times mathbb{R}$. Es sencillo comprobar que $latex mathbb{C} := (mathbb{R} times mathbb{R}, +, cdot)$ tiene estructura de cuerpo.

Otra manera mas elegante es ver que $latex mathbb{C} cong frac{mathbb{R}[x]}{(x^2+1)}$ donde $latex (x^2+1)$ es el ideal generado por el polinomio irreducible $latex x^2+1 in mathbb{R}[x]$, pues existe una propiedad que nos dice que un anillo conciente de este tipo tiene estructura de cuerpo.

El análisis complejo se encarga del estudio de las funciones de variable compleja. En próximos posts exponemos de manera breve algunos de los contenidos básicos del área: funciones analíticas, funciones holomorfas, funciones elementales, integración en el plano complejo con formula y teorema de Cauchy y teoremas de Laurent y de los residuos con algunas aplicaciones.

Tags: , , , , , , ,

La hidrodinámica (HD) es la parte de la física que estudia la dinámica de los fluidos tanto incompresibles, los líquidos, como compresibles, los gases o los líquidos a alta presión (de hecho, todos los fluidos son compresibles, siendo la incompresibilidad una aproximación para simplificar las ecuaciones que describen su dinámica).

La magnetohidrodinámica (MHD) estudia la dinámica de fluidos conductores de electricidad en presencia de campos electromagnéticos. El conjunto de ecuaciones que describen la MHD son una combinación de las ecuaciones de Navier Stokes de la dinámica de fluidos y las ecuaciones de Maxwell del electromagnetismo que deben ser resueltas simultaneamente.

Cuando tenemos flujos a velocidades cercanas a la velocidad de la luz entonces hablamos de hidrodinámica en relatividad especial (SRHD) y magnetohidrodinámica en relatividad especial (SRMHD).

Finalmente, cuando el fluido está en presencia de fuertes campos gravitatorios, como por ejemplo en presencia de objetos compactos, hablamos de hidrodinámica y magnetohidrodinámica en relatividad general (GRHD y GRMHD).

Tags: , , , , ,

FireStats icon Powered by FireStats