GR: operador gradiente, tiempo propio, 4-momento y algebra tensorial

En su Lecture II, Christopher empieza hablando del gradiente $latex boldsymbol{d}f$ de un campo escalar $latex f$ como una $latex 1$-forma (transformable en vector subiendo un índice) importante que nos permitirá definir bases de vectores y $latex 1-$formas en espacios curvados. La explicación está bastante clara y lo que hace es traducir lo que nos …

GR: vectores, 1-formas, tensores y espacio-tiempo plano

En su Lecture I nos habla de vectores, $latex 1$-formas, tensores y espacio-tiempos planos. Para empezar, un vector, a diferencia de un escalar, no solo tiene magnitud sino tambien dirección y sentido. En un contexto mas abstracto, son los elementos de un espacio vectorial fínito $latex V$ (en realidad, un espacio euclideo, es decir, un …

Operador Laplaciano n-dimensional. Discretización y fronteras mediante tensores.

En $latex n$ dimensiones, el operador Laplaciano queda como: $latex Delta u= sum_{i=1}^n frac{partial^2}{partial x_i^2}u$ en coordenadas cartesianas, y como: $latex Delta u = frac{partial}{partial r^2}u + frac{n-1}{r}frac{partial}{partial r}u + frac{1}{r^2}Delta_{S^{n-1}}u$ en esféricas, donde $latex Delta_{S^{n-1}}$ es el operador de Laplace-Beltrami, una generalización del Laplaciano para funciones definidas sobre variedades,  en la $latex (n-1)$-esfera ($latex …

Algebra tensorial y campos tensoriales sobre variedades.

Sean $latex V_1, cdots, V_r$ espacios vectoriales de dimensión finita sobre $latex mathbb{R}$ y sean $latex V_1^*, cdots, V_r^*$ sus espacios duales. Definimos el producto tensorial como el espacio vectorial de aplicaciones multilineales de $latex V_1^* times ldots times V_r^*$ en $latex mathbb{R}$, es decir: $latex V_1 otimes ldots otimes V_r := mathcal{L}(V_1^* times ldots …