FireStats error : FireStats: Unknown commit strategy

toro

You are currently browsing articles tagged toro.

Dado un embedding tanto de la esfera como del toro, lo aprovechamos para ver como quedan las funciones trigonométricas sobre estas variedades:

Tags: , ,

Tomamos el toro $latex mathbb{T}^2$ como variedad diferenciable sobre el que construiremos dos variedades de Riemann no isométricas.

Por una parte, si consideramos $latex mathbb{T}^2 = S^1(frac{1}{a^2}) times S^1(frac{1}{b^2})$. Como a $latex S^1(frac{1}{a^2})$ le corresponde la métrica $latex theta_1^2$ y a $latex S^1(frac{1}{b^2})$ le corresponde $latex theta_2^2$, podemos construir una variedad de Riemann con la métrica producto:

$latex (mathbb{T}^2, (dtheta^1)^2 + (dtheta^2)^2)$

Por otra, podemos considerar el embedding (la parametrización) de $latex mathbb{T}^2$ en $latex mathbb{R}^3$ siguiente:

$latex f: mathbb{T}^2 longrightarrow mathbb{R}^3 ,/, (theta^1,theta^2) mapsto (a+bcos theta^1) cos theta^2, (a + b cos theta^1) sin theta^2, b sin theta^2)$

de manera  que, mediante el pullback, podemos construir la métrica $latex f^*h$ donde $latex h$ es la métrica ordinaria de $latex mathbb{R}^3$:

$latex f^*h = b^2 (dtheta_1)^2 + (a+b cos theta^1)^2 (dtheta^2)^2$.

Estas dos variedades de Riemann no son isométricas (la primera tiene $latex k=0$, por lo que es isométrica al plano y la variedad recibe el nombre de toro plano, mientras que la segunda tiene $latex k neq 0$ y es el toro habitual).

Tags: , , , , ,

FireStats icon Powered by FireStats