Desacoplamiento de los sistemas para las X^i y beta^i de la discretización en cartesianas de la reformulación covariante del sector elíptico de la aproximación CFC en términos de CoCoNuT

En la discretización que hicimos teníamos dos sistemas acoplados, uno para las $latex X^i$ y otro para las $latex beta^i$. Procedemos ahora a desacoplarlos. Para empezar, tomamos la divergencia (plana) del sistema: $latex Delta X^i = 8 pi f^{ij} S^*_j – frac{1}{3}mathcal{D}^i mathcal{D}_j X^j$ y, teniendo en cuenta que $latex mathcal{D}$ conmuta con $latex Delta$ …

Discretización de la reformulación covariante del sector elíptico de la aproximación CFC en términos de CoCoNuT

Vamos a discretizar las ecuaciones que comentamos en este post. Para ello, discretizaremos las derivadas de la siguiente manera: $latex partial_x u = frac{u_{i+1,j,k}-u_{i-1,j,k}}{2h_x}$, $latex partial_y u = frac{u_{i,j+1,k}-u_{i,j-1,k}}{2h_y}$, $latex partial_z u = frac{u_{i,j,k+1}-u_{i,j,k-1}}{2h_z}$, $latex partial_{xx} u = frac{u_{i-1,j,k}-2u_{i,j,k}+u_{i+1,j,k}}{h_x^2}$, $latex partial_{yy} u = frac{u_{i,j-1,k}-2u_{i,j,k}+u_{i,j+1,k}}{h_y^2}$, $latex partial_{zz} u = frac{u_{i,j,k-1}-2u_{i,j,k}+u_{i,j,k+1}}{h_z^2}$, $latex partial_{xy} u = frac{u_{i-1,j-1,k}-u_{i+1,j-1,k}-u_{i-1,j+1,k}+u_{i+1,j+1,k}}{4h_xh_y}$, $latex …

Reescritura en cartesianas de la reformulación covariante del sector elíptico de la aproximación CFC en términos de CoCoNuT

Ya escribimos al respecto en este post. Aquí lo que haremos es reescribir las expresiones allí introducidas En primer lugar, teniamos:  $latex Delta X^i = 8 pi f^{ij}S_j^* – frac{1}{3}mathcal{D}^i mathcal{D}_j X^j$ donde: $latex S_j^* := sqrt{ frac{gamma}{f} } S = psi^6 S_j$, $latex S_j := rho h w^2 v_j$. En el caso de estar …

Reescritura de la reformulación del sector elíptico de la aproximación CFC en términos de CoCoNuT

CoCoNuT es un código que permite realizar simulaciones de colapso estelar. Reescribimos las ecuaciones CFC, que son un caso particular de la aproximación FCF haciendo que las $latex h^{ij}$ sean cero, en terminos de las variables que éste utiliza. Empezamos con una auxilar:  $latex Delta X^i = 8 pi f^{ij}S_j^* – frac{1}{3}mathcal{D}^i mathcal{D}_j X^j$ donde: …

El metric solver

Como ya comentamos, de la tesis de Bauswein, adoptando la foliación $latex 3+1$ del espacio-tiempo la métrica queda: $latex ds^2 = (- alpha^2 + beta_i beta^i) dt^2 + 2 beta_i dx^i dt + gamma_{ij} dx^i dx^j$ En la aproximación CFC resolvemos repetidamente el problema de valor inicial. De acuerdo con esta aproximación, la parte espacial …