SPH y Relatividad Especial

En [Monaghan 1992] comenta el caso del método SPH en relatividad especial. Para empezar asumimos que el fluido está constituido por bariones, por lo que el tensor de energia-momento es: $latex T^{mu nu} = (n m_0 c^2 + n tau + P) U^mu U^nu + P g^{mu nu}$ donde los indices griegos van de $latex 0$ […]

Varias propuestas para la función kernel de SPH, derivadas y propiedades.

Existen diferentes posibilidades a la hora de definir una función kernel: Gaussiana [Gingold & Monaghan, 1977]:$latex W(r,h) = alpha_D cdot e^{-q^2}$ con $latex 0 leq q leq 2$ donde $latex q=frac{r}{h}$, $latex r$ es la distancia entre dos partículas determinadas y $latex alpha_D$, el factor dimensional, que es $latex frac{1}{pi h^2}$ en dos dimensiones y […]

Propiedades de la función kernel en SPH

En el artíclo [Gingold & Monaghan, 1977] se introducen La función kernel, $latex W(vec{r}-vec{r’},h)$, es una función que permite interpolar los valores de cualquier propiedad del fluido en función del valor de las partículas del entorno. Su papel es similar al de los diferentes esquemas de diferencias en el ámbito de las Diferencias Finitas o […]

Orígenes del Smoothed Particle Hydrodynamics (SPH)

En el artículo  [Gingold & Monaghan, 1977] se presenta por primera vez el método Smoothed Particle Hydrodynamics. Los autores, originalmente, buscaban un método que permitiera tratar problemas en astrofísica asimétricos (sin simetría esférica, sin simetría axial, etc.) . En estos casos, los métodos de diferencias finitas no se adaptan bien, pues requieren elevar el número […]