algebra Lie

You are currently browsing articles tagged algebra Lie.

Las álgebras de Lie aparecen al estudiar los grupos de Lie compactos, aunque adquieren entidad propia dada su importancia en el estudio de los grupos y sus representaciones.

Se utilizan, entre otras cosas, para el análisis de esquemas de ruptura de la simetría gauge, al estudiar el modelo quark de los hadrones, en la reducción dimensional de teorías multidimensionales,…

Dado un grupo de Lie $latex G$ podemos asociarle un álgebra de Lie $latex mathfrak{g}$. En este post vamos a ver como.

Sea $latex v(x)$ un campo vectorial en el grupo de Lie $latex G$. Diremos que el campo $latex v(x)$ es invariante por la izquierda si lo es respecto a los desplazamientos a la izquierda:

$latex (L_a)_* v(x) = v(ax)$ con $latex a in G$.

Antes de seguir, clarifiquemos el significado de la expresión anterior. Para empezar, si $latex a in G$ es un elemento del grupo, $latex L_a x = ax$ representan las traslaciones a la izquierda de valor $latex a$. Como $latex v(x)$ es un campo vectorial, lo que tenemos es una aplicación:

$latex v: G longrightarrow TG$,

donde $latex TG$ es la variedad tangente a $latex G$. Finalmente, para la aplicación:

$latex L_a: G longrightarrow G$

de las traslaciones a izquierda, podemos construir su aplicación diferencial:

$latex (L_a)_*: TG longrightarrow TG$.

De esta manera, todo tiene sentido: como $latex x in G$ entonces $latex v(x) in TG$ y podemos aplicarle $latex (L_a)_*$ que nos devuelve un elemento de $latex TG$. Por otro lado, $latex ax in G$ y $latex v(ax) in TG$.

Con todo lo visto, dado un grupo de Lie $latex G$, el subconjunto $latex mathfrak{g}$ del conjunto de todos los campos diferenciables $latex chi(G)$ en $latex G$ es un subespacio vectorial. Como:

$latex (L_a)_*[u(x),v(x)] = [(L_a)_* u(x), (L_a)_* v(x)]$,

entonces $latex mathfrak{g}$ es un álgebra de Lie del grupo de Lie $latex G$ con conmutador $latex [u(a), v(a)]$.

Tags: , ,

Ya hemos visto que, dado un espacio vectorial, es fácil dotarlo de estructura de variedad diferenciable. Vamos a ver que podemos dotarlo de mas estructura.

Sea $latex mathfrak{g}$ un espacio vectorial. Diremos que $latex mathfrak{g}$ es un álgebra de Lie si tenemos definido un conmutador, o sea, una aplicación bilineal

$latex mathfrak{g} times mathfrak{g} rightarrow mathfrak{g}$

tal que:

  1. $latex [u,v] = -[v,u]$ para todo $latex u, v in mathfrak{g}$,
  2. cumple la identidad de Jacobi: $latex [u,[v,w]] + [w,[u,v]] + [v,[w,u]] = 0$ para todo $latex u, v, w in mathfrak{g}$.

Si además $latex [u,v]=0$ para todo $latex u,v in mathfrak{g}$ entonces tenmos un álgebra de Lie conmutativa.

Un ejemplo muy conocido de álgebra de Lie es el espacio euclideo tridimensional $latex mathbb{E}^3$ donde tomamos como conmutador el producto vectorial. Otro ejemplo que nos interesa, por su relación con los grupos de Lie ya vistos, es el álgebra de Lie lineal general $latex mathfrak{gl}(n,mathbb{K})$ de las matrices de orden $latex n$ sobre $latex mathbb{K}$ con el conmutador:

$latex [A,B] = AB – BA$.

Ya veremos que los grupos de Lie y las álgebra de Lie están estrechamente relacionadas.

Algunas cuestiones mas al respecto:

  • Dadas dos álgebras de Lie $latex mathfrak{g}$ y $latex mathfrak{g’}$ sobre un mismo cuerpo, diremos que son isomorfas si existe un isomorfismo lineal $latex varphi: mathfrak{g} rightarrow mathfrak{g’}$ que conserva el conmutador: $latex varphi([u,v]) = [varphi(u),varphi(v)]$.
  • Si $latex { e_i }$ es una base del álgebra de Lie, podemos escribir los conmutadores $latex [e_j,e_k]$ respecto de esta base: $latex [e_j,e_k] = c_{jk}^i e_i$ que reciben el nombre de ecuaciones estructurales y los coeficientes $latex c_{jk}^i$ el de constantes de estructura.

Tags: , ,