conmutador

You are currently browsing articles tagged conmutador.

En el caso de $latex GL(n,mathbb{K})$, un desplazamiento a la izquierda tiene la forma:

$latex L_A X = AX$

donde $latex AX$ es el producto de matrices y cuya diferenciación, que es lo que nos interesa, es:

$latex (L_A)_* U = AU$ con $latex U in M(n,mathbb{K})$.

De esta manera, todo campo vectorial invariante por la izquierda en $latex GL(n,mathbb{K})$ tiene la forma $latex U(A)= AU$. Si tomamos como $latex U$ los elementos $latex e_alpha^beta$ (las matrices con todos los elementos nulos excepto en la fila $latex alpha$-ésima y la columna $latex beta$-ésima que contiene a la unidad), obtenemos una base de estos campos:

$latex e_alpha^beta (A) = A e_alpha^beta$

que son las matrices de orden $latex n$ donde los elementos no nulos forman la columna $latex beta$-ésima.

Sean $latex U(A)=AU$ y $latex V(A)=AV$ un par de campos invariantes por la izquierda. Teniendo en cuenta que:

$latex frac{partial}{partial a_mu^nu}a_alpha^beta = delta_mu^alpha delta_beta^nu$

obtenemos:

$latex [U(A),V(A)] = A(UV-VU)$.

Tomando $latex A=I$, obtenemos un álgebra de Lie que podemos identificarla con el espacio tangente a la unidad del grupo $latex GL(n,mathbb{K})$ que coincide con el espacio $latex M(n,mathbb{K})$ de todas las matrices de orden $latex n$ con conmutador:

$latex [U,V] = UV-VU$,

y que denotaremos mediante $latex mathfrak{gl}(n,mathbb{K})$.

Tags: , , ,

Ya hemos visto que, dado un espacio vectorial, es fácil dotarlo de estructura de variedad diferenciable. Vamos a ver que podemos dotarlo de mas estructura.

Sea $latex mathfrak{g}$ un espacio vectorial. Diremos que $latex mathfrak{g}$ es un álgebra de Lie si tenemos definido un conmutador, o sea, una aplicación bilineal

$latex mathfrak{g} times mathfrak{g} rightarrow mathfrak{g}$

tal que:

  1. $latex [u,v] = -[v,u]$ para todo $latex u, v in mathfrak{g}$,
  2. cumple la identidad de Jacobi: $latex [u,[v,w]] + [w,[u,v]] + [v,[w,u]] = 0$ para todo $latex u, v, w in mathfrak{g}$.

Si además $latex [u,v]=0$ para todo $latex u,v in mathfrak{g}$ entonces tenmos un álgebra de Lie conmutativa.

Un ejemplo muy conocido de álgebra de Lie es el espacio euclideo tridimensional $latex mathbb{E}^3$ donde tomamos como conmutador el producto vectorial. Otro ejemplo que nos interesa, por su relación con los grupos de Lie ya vistos, es el álgebra de Lie lineal general $latex mathfrak{gl}(n,mathbb{K})$ de las matrices de orden $latex n$ sobre $latex mathbb{K}$ con el conmutador:

$latex [A,B] = AB – BA$.

Ya veremos que los grupos de Lie y las álgebra de Lie están estrechamente relacionadas.

Algunas cuestiones mas al respecto:

  • Dadas dos álgebras de Lie $latex mathfrak{g}$ y $latex mathfrak{g’}$ sobre un mismo cuerpo, diremos que son isomorfas si existe un isomorfismo lineal $latex varphi: mathfrak{g} rightarrow mathfrak{g’}$ que conserva el conmutador: $latex varphi([u,v]) = [varphi(u),varphi(v)]$.
  • Si $latex { e_i }$ es una base del álgebra de Lie, podemos escribir los conmutadores $latex [e_j,e_k]$ respecto de esta base: $latex [e_j,e_k] = c_{jk}^i e_i$ que reciben el nombre de ecuaciones estructurales y los coeficientes $latex c_{jk}^i$ el de constantes de estructura.

Tags: , ,