caracter involutivo

You are currently browsing articles tagged caracter involutivo.

Para un observador inicial, si denotamos con $latex vec{E}$ al campo eléctrico, $latex vec{B}$ al campo magnético, $latex rho$ a la densidad de carga y $latex vec{J}$ a la densidad de corriente, entonces tenemos las ecuaciones de Maxwell:

$latex nabla cdot vec{E} = rho$

$latex nabla times vec{E} + vec{B}_t = 0$

$latex nabla cdot vec{B} = 0$

$latex nabla times vec{B} – vec{E}_t = vec{J}$

y la ecuación de continuidad o de conservación de carga:

$latex rho_t + nabla cdot vec{J} = 0$

Si el observador inercial se encuentra en el espacio-tiempo de Minkowski, las ecuaciones de Maxwell se expresan como dos ecuaciones de ligadura:

$latex nabla cdot vec{E} = rho$

$latex nabla cdot vec{B} = 0$

y seis ecuaciones de evolución:

$latex vec{E}_t = nabla times vec{B} – vec{J}$

$latex vec{B}_t = -nabla times vec{E}$

Si en un instante $latex t=t_0$ se cumplen las ecuaciones de ligadura y si la carga eléctrica se conserva en un entorno de $latex t=t_0$,

$latex rho_t + nabla cdot vec{J} = 0$,

entonces las ecuaciones de ligadura se cumplen en ese entorno (como consecuencia de las ecuaciones de evolución).

Tags: ,