Ejemplos de cálculos tensoriales utilizando superficies de curvatura constante (I): primera y segunda forma fundamental, normal y curvatura intrínseca.

Existe un teorema que nos dice que dada una variedad de Riemann $latex M$ conexa, completa y simplemente conexa con curvatura constante $latex k$ es isométrica a: el Espacio Hiperbólico: $latex mathbb{H}^n(k)$ si $latex k<0$, el Espacio Euclídeo: $latex mathbb{R}^n$ si $latex k=0$, la Hipersuperfície Esférica: $latex S^n(k)$ si $latex k>0$. En particular, cuando la […]