23 marzo, 2013

You are currently browsing the daily archive for 23 marzo, 2013.

Sigamos con lo que empezamos en el post anterior.

Empezamos trabajando ahora suponiedo que, inicialmente, nos dan la variedad de Riemann $latex (S^2(1/a^2),g)$ con

$latex g = left(
begin{array}{cc}
a^2 & 0 \
0 & a^2 sin^2 theta
end{array}
right)$

y veremos como calcular, a partir de aquí, como encontrar longitudes, áreas, ángulos, la conexión de Levi-Civita correspondiente a la métrica dada, es decir, como realizar la derivación covariante o transporte paralelo, como encontrar las geodésicas, la calcular la curvatura intrínseca, etc.

Para empezar, dada una curva $latex gamma:I longrightarrow M$ diferenciable, $latex forall a,b in I$, $latex a < b$, se define la longitud del segmento de curva $latex alpha$, desde $latex a$ hasta $latex b$, como:

$latex L [gamma]_a^b=int_a^b || gamma’||dt$ con $latex ||gamma’|| = sqrt{g(gamma’,gamma’)}$,

es decir:

$latex L [gamma]_a^b=int_a^b sqrt{g_{ij} gamma’^i gamma’^j} dt$

En este primer caso que nos ocupa, vamos a medir la longitud de medio meridiano, $latex varphi=0$ ,parametrizado sobre la esfera como $latex gamma(theta,0)=a(sin theta, 0, cos theta)$ con $latex theta in ]0,pi[$. Pero hay que realizar los cálculos de manera intrínseca, por lo que la curva que nos interesa es $latex gamma(theta)=(theta,0)$ con $latex theta in ]0,pi[$. Calculamos $latex dot{gamma}(t) = (1,0)$, de manera que $latex dot{gamma}^1(t) = 1$ y  $latex dot{gamma}^2(t)=0$. Entonces:

$latex L[gamma]_0^{pi} = int_0^{pi} sqrt{sum_{i=0}^1 sum_{j=0}^1 g_{ij} dot{gamma}^i(t) dot{gamma}^j(t)} dt = int_0^{pi} sqrt{ a^2 } dt = a int_0^{pi} dt = a pi$

De la misma manera, para los habitantes de la hiperesfera $latex mathbb{H}^2(-frac{1}{a^2})$, pueden medir la longitud de una sección apropiada (recordar que tenemos comportamiento asintótico en $latex 0$ y cambio discontínuo de la normal a la superfície en $latex theta = frac{pi}{2}$) de su meridiano $latex 0$ sabiendo su parametrización en coordenadas $latex (theta, phi)$ sobre la hiperesfera y conociendo la métrica de esta variedad en donde viven:

$latex gamma(theta,varphi) = (theta, 0)$ con $latex theta in ]b,c[$

$latex g = left(
begin{array}{cc}
a^2 cot^2 theta & 0 \
0 & a^2 sin^2 theta
end{array}
right)$

de manera que, procediendo como antes:

$latex L[gamma]_b^c = a int_b^{c} sqrt{cot^2 theta} dtheta = a sqrt{cot^2 theta} tan theta ln[sin theta]|_{b}^{c}$.

Por ejemplo, para $latex a=1$, $latex b = frac{pi}{4}$ y $latex c = frac{pi}{2}$ nos queda $latex L[gamma]_{frac{pi}{4}}^{frac{pi}{2}} = frac{ln{2}}{2}$ y para $latex L[gamma]_{frac{pi}{8}}^{frac{pi}{2}} = -ln{sin frac{pi}{8}}$.

¿Necesitamos calcular la conexión de Levi-Civita $latex nabla$, que es la única libre de torsión (dados dos campos vectoriales $latex X, Y$, como $latex T(X,Y) = nabla_X Y – nabla_Y X – [X,Y]$, lo que tenemos es que $latex nabla_X Y – nabla_Y X = [X,Y]$) que preserva la métrica ($latex nabla_g = 0$) para calcular las geodésicas?

Pues no.  En el libro Geometría Diferencial y Relatividad de J. Girbau encontramos una receta del procedimiento para calcular las geodésicas basada en, a grandes rasgos:

  • Llamamos geodésica a toda curva $latex x(t)$ tal que $latex nabla_{dot{x(t)}} dot{x(t)} = 0$.
  • En coordenadas, $latex nabla_X Y = ( X(Y^k) + Y^j X^i Gamma_{ij}^k) e_k$.
  • En una carta local $latex (U,x^i)$, le ecuación $latex nabla_{dot{x(t)}} dot{x(t)}$ se escribe $latex frac{d^2 x^i}{dt^2}+Gamma_{jk}^i frac{dx^j}{dt} frac{dx^k}{dt} = 0$ donde $latex Gamma_{jk}^i$ son los símbolos de Christoffel relativos a la base $latex partial_{x^i}$.
  • «muchos matemáticos alejados del mundo de la física o del cálculo de variaciones en su formulación primitiva de Euler», como es mi caso :-), «tienen la firme convicción de que para escribir explícitamente las ecuaciones de las geodésicas de una determinada métrica de Riemann es indispensable haber calculado previamente la derivada covariante $latex nabla$ asociada a la métrica, ya sea por sus símbolos de Christoffel o per algun otro método equivalente. Nada mas lejos de la realidad».
  • Tendremos la métrica $latex g$ que depende de $latex x^1,ldots,x^n$. Escribimos, formalmente, la función de $latex 2n$ variables $latex x^i, dot{x}^i$ que volvemos a denotar $latex g$ abusando de la notación. Entonces, con la convención $latex frac{d}{dt}x^i = dot{x}^i$ y $latex frac{d}{dt}dot{x}^i = ddot{x}^i$, las ecuaciones de las geodésicas son: $latex frac{d}{dt} frac{partial}{partial dot{x}^i} g = frac{partial}{partial x ^i} g $.

Vamos a aplicarlo, en primer lugar, a la esfera $latex S^2(frac{1}{a^2})$. Como:

$latex g = a^2 dtheta otimes dtheta + a^2 sin^2 theta dvarphi otimes dvarphi$,

entonces:

$latex g(theta,varphi,dot{theta},dot{varphi}) = a^2 dot{theta}^2+ a^2 sin^2 theta dot{varphi}^2$,

de manera que:

$latex partial_theta g = a^2 , 2 sin theta cos theta dot{varphi}^2$

$latex partial_varphi g = 0$

$latex partial_{dot{theta}} g = a^2 , 2 dot{theta}$ y entoces $latex frac{d}{dt} partial_{dot{theta}} g = a^2 2 ddot{theta}$

$latex partial_{dot{varphi}} g = a^2 sin^2 theta 2 dot{varphi} $ y entonces $latex frac{d}{dt} partial_{dot{varphi}} g = 2 a^2 sin theta (cos theta dot{theta} dot{varphi} + sin theta ddot{varphi})$.

Así pués, las ecuaciones de las geodésicas son:

$latex begin{cases}ddot{theta} – dot{varphi}^2 sin theta cos theta = 0 \ sin theta (2 dot{theta} dot{varphi} cos theta + ddot{varphi} sin theta) = 0 end{cases}$

En el caso de la pseudoesfera $latex mathbb{H}^2(-frac{1}{a^2})$ tenemos:

$latex g = a^2 cot^2 theta dtheta otimes dtheta + a^2 sin^2 theta dvarphi otimes dvarphi$,

entonces:

$latex g(theta,varphi,dot{theta},dot{varphi}) = a^2 cot^2 theta dot{theta}^2+ a^2 sin^2 theta dot{varphi}^2$,

de manera que:

$latex partial_theta g = 2 a^2 (-dot{theta}^2 cot theta csc^2 theta + dot{varphi}^2 cos theta sin theta )$

$latex partial_varphi g = 0$

$latex partial_{dot{theta}} g = 2 a^2 dot{theta} cot^2 theta$ y entoces $latex frac{d}{dt} partial_{dot{theta}} g = 2 a^2 cot theta (ddot{theta} cot theta – 2 dot{theta}^2 csc^2 theta )$

$latex partial_{dot{varphi}} g = 2 a^2 dot{varphi} sin^2 theta$ y entonces $latex frac{d}{dt} partial_{dot{varphi}} g =2 a^2 sin theta (ddot{varphi} sin theta + 2 dot{theta} dot{varphi} cos theta )$.

Así pues, las geodésicas cumplen:

$latex begin{cases} cot theta (ddot{theta} cot theta – 2 dot{theta}^2 csc^2 theta) – (-dot{theta}^2 cot theta csc^2 theta + dot{varphi}^2 cos theta sin theta ) = 0 \ sin theta (ddot{varphi} sin theta + 2 dot{theta} dot{varphi} cos theta ) = 0 end{cases}$

Para terminar, procediento de la misma manera para $latex mathbb{R}^2$ obtenemos que las geodésicas satisfacen:

$latex begin{cases} ddot{theta} = 0 \ ddot{varphi} = 0 end{cases}$

Tags: , , , , , , , ,