12 agosto, 2012

You are currently browsing the daily archive for 12 agosto, 2012.

Según Monaghan en [Monaghan, 1992], uno de los padres del método, buscaban un método con el que fuera fácil trabajar y diera buenos resultados y encontraron eso y mucho mas.

Además de no  necesitar malla para calcular las derivadas, puesto que se calculan de manera analítica a partir de una fórmula de interpolación, las ecuaciones de conservación del momento y la energía pasan a ser un conjunto de ecuaciones diferenciales ordinarias fáciles de entender.

En esencia, el método SPH es un método de interpolación que permite expresar una función a partir de los valores en un conjunto desordenado de puntos a los que llamamos particulas.

La idea es que aproximamos cualquier función $latex A(r)$ de la siguiente manera:

$latex A_I(r) = int A(r’) W(r-r’,h) dr’$

donde $latex r$ es el vector posición, $latex W$ es una función de pesos o kernel (con las propiedades ya comentadas en otros posts) y $latex h$ es la longitud de suavizado. Este tipo de aproximaciones reciben el nombre de interpolación integral.

Para trabajar de manera numérica, la interpolador integral se aproxima por:

$latex A_S(r) = sum_b m_b frac{A_b}{rho_b} W(r-r_b,h)$

donde el índice del sumatorio $latex b$ identifica a cada partícula y el sumatorio es sobre todas las partículas. La partícula $latex b$ tiene masa $latex m_b$, posición $latex r_b$, densidad $latex rho_b$ y velocidad $latex v_b$. El valor de la función $latex A$ en $latex r_b$ es $latex A_b$.

Tags: , ,

En el artículo [Rosswog 2009], Stephan Rosswog hace un repaso detallado del método SPH centrandose especialmente en sus aplicaciones en astrofísica. Repasamos el apartado que hace referencia a las ecuaciones de la hidrodinámica en forma Lagrangiana.

A diferencia de los metodos basados en malla, que son Eulerianos, es decir, métodos donde  describimos el fluido desde un punto fijo del espacio, el Smoothed Particle Hydrodynamics es totalmente Lagrangiano, por lo que describimos el fluido desde un sistema de coordenadas fijado en una particula del fluido en movimiento.

La derivada Lagrangiana o sustancial respecto del tiempo, $latex frac{d}{dt}$, se relaciona con la derivada Euleriana respecto al tiempo, $latex frac{partial}{partial t}$ de la siguiente manera:

$latex frac{d}{dt} = frac{dx^i}{dt} frac{partial}{partial x^i} + frac{partial}{partial t} = vec{v} cdot nabla + frac{partial}{partial t}$

Aplicando esta relación a las ecuaciones en forma Euleriana, las ecuaciones de la hidrodinámica en forma Lagrangiana quedan:

  1. Ecuación de continuidad: $latex frac{d}{dt} rho = – rho nabla cdot vec{v}$
  2. Ecuacion del momento: $latex frac{d}{dt} vec{v} = -frac{nabla P}{rho} + vec{f}$
  3. Ecuación de la energía: $latex frac{d}{dt}u = frac{P}{rho^2} frac{d}{dt} rho = – frac{P}{rho} nabla cdot vec{v}$
  4. Ecuación de estado, que describe la termodinámica del fluido estelar: $latex P = (gamma -1) cdot rho cdot epsilon$ (ecuación del gas ideal)

Tags: , , , , , , , , , , ,