16 agosto, 2012

You are currently browsing the daily archive for 16 agosto, 2012.

En [Rosswog 2009] tenemos las ecuaciones de la hidrodinámica en forma Lagrangiana discretizadas y en su forma mas básica. Las partículas avanzaran en el tiempo siguiendo las siguientes ecuaciones:

Para empezar, no hay necesidad de resolver la ecuación de continuidad ya que la masa de las partículas permanece fija. Podemos obtener las densidades mediante:

$latex rho_a = sum_b m_b W_{ab}$

La ecuación del momento queda:

$latex frac{d}{dt}vec{v}_a = – sum_b m_b (frac{P_a}{rho_a^2} + frac{P_b}{rho_b^2} + Pi_{ab} ) nabla_a W_{ab} $

La ecuación de evolución para la energía interna específica puede escribirse como:

$latex frac{d}{dt} u_a = sum_b m_b (frac{P_a}{rho_a^2} + frac{1}{2}Pi_{ab}) vec{v}_{ab} nabla_b W_{ab} $

Rosswog las llama «vanilla ice» SPH.